Советы по строительству и ремонту

Экология потребления.Наука и техника: На сегодняшний день, мало построить дом вашей мечты, в котором те же окна, двери и цвет фасада, что вы себе и представляли. Дом должен быть экономным. И мы расскажем, каким должно быть проектирование энергоэффективного дома.

Ориентация здания по сторонам света . Это в первую очередь влияет на энергоэффективность дома. Главная задача - максимально открыть дом с южной стороны, а с северной, наоборот, закрыть. Поэтому самые большие окна должны выходить на юг. Поскольку зимой солнце ниже, благодаря остеклению прогреваются полы и стены, дающие и теплый воздух. Летом обязательно использовать маркизы и наружные (!) жалюзи. С северной стороны дом по возможности должен быть защищен природными холмами или деревьями.

Размер здания. Высота и форма энергоэффективного дома здания влияют на его экономичность. Есть такое понятие, как компактность здания - это отношение площади ограждающих конструкций к внутреннему объему дома. Дом должен быть максимально приближен к форме куба, в этом случае площадь поверхности, через которую уходит тепло, наименьшая.

Теплоизоляция. Энергоэффективный дом не должен «дышать», для этого существует система вентиляции. А при строительстве дома важно обеспечить тепловую герметизацию здания, чтобы оно сохраняло тепло или прохладу.


В доме, построенном по традиционной технологии, нельзя полностью исключить тепловые потери через стены. Кирпич с точки зрения сохранения тепла - это просто ограждающая конструкция. Он ничего не дает. Это 5 % энергоэффективности стены. Если говорить о снижении потребления тепла, то, сделав дополнительную изоляцию стен, вы сэкономите 40% расходов, утеплив крышу, еще на 20% сократите сумму в чеке, а поставив хорошие оконные конструкции, выиграете еще 15%.

Системы вентиляции. Если обычная система вентиляции забирает холодный воздух с улицы, нагревает его и выбрасывает наружу, то энергоэффективный дом использует принцип возвращения тепла благодаря механической системе вентиляции с рекуперацией. В итоге на отопление в нем используется на 20-30% энергии меньше, чем в обычном утепленном доме.

Система работает так: один вентилятор забирает воздух с улицы, затем он проходит через теплообменник и разносится по дому, а отработанный воздух из помещения по воздуховоду идет на теплообменник и затем выводится наружу. К примеру, если с улицы мы забрали воздух с температурой -20°С, то когда он попадет внутрь помещения после рекуператора, его температура будет уже +10°С, то есть нагреть его нужно будет всего лишь на 10 градусов. В этом случае дом тратит меньше энергии. Плюс для обогрева такого дома нужен котел мощностью уже не 20 кВт, а 7 кВт. И заплатите вы за коммуналку в несколько раз меньше.


Окна. Энергоэффективный дом как и любой другой требует естественного света, но, чтобы не терять тепло и не тратить лишнюю электроэнергию, важно выбрать и правильно расположить окна.

На теплоизоляционные свойства стеклопакета влияют количество камер и расстояние между стеклами. Тем не менее, следует помнить, что само по себе стекло слабо препятствует потере тепла, поэтому можно дополнительно утеплить стеклопакет, заполнив камеры инертным газом - аргоном, а лучше - криптоном. Не менее важно для теплоизоляции окон и качество их установки. К сожалению, они очень редко монтируются в полном соответствии с технологией. Все потому, что многие застройщики не желают нести дополнительные затраты - использовать профессиональные материалы и привлекать квалифицированных специалистов, работа которых стоит дороже. В итоге страдаем, прежде всего, мы, ведь подобная «экономия» может свести к нулю все преимущества дорогого качественного окна.


Отопление. В нашей климатической зоне затраты на обогрев дома - одна из существенных статей расходов. Традиционная система отопления использует дорогостоящие традиционные энергоресурсы, в то время как тепловой насос потребляет лишь незначительное количество электроэнергии, большую ее часть он получает из возобновляемых источников - земли, воды и воздуха.

Какой принцип работы теплового насоса? Зимой за счет тепла, аккумулированного грунтом, водой или воздухом, можно получить энергию, которой хватит на обогрев всего дома. Этот источник тепла не требует подключения к внешним газовым сетям и, самое приятное, существенно снижает коммунальные платежи. Так, например, тепловой насос системы «воздух–вода» функционирует по принципу системы, которая отбирает низкопотенциальное тепло воздуха и направляет его на обогрев дома. В результате тепловой насос потребляет из сети 1 кВт·ч электроэнергии, а отдает 4-5 кВт·ч тепла. Летом, наоборот, используя 1 кВт·ч электроэнергии, он дает 4 кВт·ч холода.

Электричество. Благодаря современным технологиям энергоэффективный дом может получать 45% всей энергии из возобновляемых источников. В наших климатических условиях - это солнце. Наиболее распространенные солнечные коллекторы, или гелиоколлекторы, позволяют на 86% покрыть расходы на горячую воду, а зимой на 10% участвуют в отоплении.


Для преобразования энергии солнца в электричество также используются фотоэлектрические панели. С их помощью можно получить достаточно энергии для освещения, например, дачного домика, работы телевизора, маленького холодильника или насоса для полива. Уже достаточно много объектов, в которых именно эти задачи решаются с помощью как исключительно фотопанелей, так и комплексных решений, где эти установки используются наряду с небольшими ветро-, бензо- или дизельгенераторами.

Устранение мостиков холода . Как показывает практика, из-за дефектов и недоделок при постройке в изоляции здания могут возникать значительные тепловые потери - до 20-30%. Чтобы найти эти слабые места, дом проверяют на герметичность c помощью теста давлением.


Делать это лучше после того, как уже поставлены окна и двери и выполнена черновая отделка, чтобы можно было легко устранить дефекты. Для этого дом полностью закрывают, а в проеме входной двери ставят мощный вентилятор, который нагнетает воздух, создавая необходимое давление. Затем внутри и снаружи здания проводится тепловизионная съемка, по итогам которой получается изображение объекта.

На снимках можно определить не только проблемные места, но и увидеть качество установки окон и дверей, выявить скрытые щели в стенах, оценить целостность водяного теплого пола, проконтролировать теплоизоляцию крыши. Имея на руках такие данные, можно предпринимать дальнейшие шаги по утеплению дома. А если строительные работы выполняла компания – требовать у нее устранения дефектов.опубликовано

Присоединяйтесь к нам в

В большинстве регионов России отапливать дом приходится в среднем около трех сезонов, так как климат достаточно суровый. Как следствие, на отопление жилых помещений требуется достаточно много ресурсов, а значит, и немалых затрат из семейного бюджета. Энергоэффективный дом представляет собой жилое строение, теплоэффективность которого (потери тепла через пол, стены, потолок, двери и окна) по сравнению со стандартным коттеджем улучшена на 30 и больше процентов.

Энергоэффективный дом – это не просто «термос», но и применение современных технологий

Как создать энергоэффективный дом

Перед тем, как начать подбирать материалы для утепления дома и их толщину, следует определиться с некоторыми важными исходными значениями :

    площадь будущего дома ;

    площадь каждого фасада ;

    тип проемов для окон и их размеры;

    объем поверхности подвалов и фундамента;

    внутренний объем жилого помещения ;

    высота потолка;

    вариант вентиляции – принудительная или же естественная.

Главные потери тепла в доме происходит через:

    вентиляционные отверстия;

    ограждающие конструкции, а именно стены, фундамент и крышу;

    оконные проемы.

Уже на этапе подготовки проекта стоит стремиться к созданию минимальных потерь тепла сразу во всех этих составляющих дома, т.е. они должны быть аналогичными, около 33,3%. Таким образом, достигается идеальный баланс между выгодой и специальным дополнительным утеплением.

Важно! больше всего тепла из дома уходит через оконные проемы, поэтому при оформлении проекта нужно стараться построить дом так, чтобы окна находились на более солнечной стороне, прогревая стекла. Таким образом, солнечная инсоляция будет восполнять потерю теплового ресурса из дома.

Строительство экодома, как правило, обходится на порядок дороже. Обычно, это процентов 15-20, но эти затраты со временем себя оправдают. Это время – примерно в течение первого года проживания в новом доме.

Комплекс мероприятий по улучшению энергоэффективности дома:

    теплоизоляция стен – почти все варианты утепления предусматривают создание композитных стен, т.е. слоеных, где каждый слой имеет свое назначение (несущая, теплоизолирующая часть и облицовка);

    утепление потолка – все тепло поднимается вверх, поэтому утепление этой составляющей дома очень важно;

    утепление пола – холодное напольное перекрытие способствует быстрой потере тепла (использование полистирола или минеральной ваты);

    теплоизолирование оконных и дверных проемов.

Энергетический баланс

Важная характеристика эко жилья – это баланс между трансмиссионной или вентиляционной потерей тепла и его образованием вместе с энергией от солнца, обогревом и внутренними тепловыми источниками. Для его достижения важны следующие составляющие :

    компактность здания;

    теплоизоляция обогреваемой площади;

    поступление тепловой энергии от солнца , посредством выхода оконных проемов в южную сторону с отклонением до 30 градусов и отсутствию затемнения.

При расчетах учитывают угол падения света от солнца в разные времена года

Чтобы снизить затраты энергетических ресурсов, следует использовать бытовую технику с высокими уровнями энергоэффективности. Идеальное пассивное жилье – это дом-термос с отсутствием отопления. Воду нагревать можно, используя солнечный коллектор или же тепловой насос.

На нашем сайте Вы можете ознакомиться с самыми популярными проектами от строительных компаний, представленных на выставке домов «Малоэтажная Страна».

Преимущество экодома

Энергосберегающий дом имеет ряд положительных качеств перед другими видами жилых пространств:

    экономичность – если же дом пассивный, то все затраты на электроэнергию будут находиться все на таком же низком уровне, даже если стоимость вырастет;

    повышенный уровень комфорта – чистота, приятный микроклимат и свежий воздух, все это обеспечивает специальная инженерная система;

    энергосбережение – на отопительные нужды в этих домах затраты в 10 раз меньше, по сравнению с обычными;

    польза для здоровья – отсутствует плесень, нет сквозняков, повышена влажность и постоянно свежий воздух;

    нет вреда для природы – современные энергоэффективные технологии снижают уровень выброса вредных веществ в атмосферу.

Современный эко-дом можно охарактеризовать одним словом – баланс

Пассивным жилым пространством считается особый стандарт энергоэффективности, которые дает возможность экологически чисто и экономно устраивать комфортность проживания, с причинением минимального вреда для экологии. При этом потребление ресурсов максимально снижено, значит, нет необходимости устанавливать отдельную систему отопления, или же размеры и мощность уже созданной достаточно малы.

Стадия проектировки дома – планирование энергоэффективности

Уже во время выбора земельного участка для строительства будущего жилого пространства следует учитывать природный ландшафт. Местность в обязательном порядке должна быть ровной и не иметь перепадов высоты. Однако, если перепады все же есть, то их можно выгодно использовать, она позволит обеспечить подачу воды, затраты на которую минимальны.

Как уже говорилось ранее, стоит выбирать более освещенную солнцем сторону, потому как его можно использовать вместо электрического. Звукоизоляция и теплоизоляция необходимо предусматривать уже тогда, когда готовится проект энергоэффективного дома, потому как экономия энергии без них просто невозможна.

Скат крыльца, кровля и козырек должны иметь оптимальную ширину, таким образом, чтобы не было тени при наличии дневного освещения, одновременно защищая фасад от дождя и перегрева. Крыша конструируется с учетом критического веса снега в зимнее время. Не забудьте организовать качественное утепление и грамотные стоки воды.

Все оборудование пассивного дома «связывается» в единую энергоэффективную систему еще на стадии проектирования

Технология создания пассивного дома

Для достижения высокого уровня экономии энергии, строительство энергоэффективных домов предполагает грамотную работу одновременно по четырем направлениям :

    Отсутствие тепловых мостов – старайтесь избегать включений, которые проводят тепло. Для этого существует специальная программа по расчетам температурного поля, которая дает возможность обнаружить и провести анализ наличия всех неблагополучных мест всех конструкций ограждения здания, для будущей оптимизации.

    Рекуперация тепловой энергии , механическая вентиляция и внутренняя герметизация. Нахождение и устранение ее утечек создается путем организации испытаний воздухонепроницаемости зданий.

    Теплоизоляция должна обеспечиваться во всех внешних участках – стыковых, угловых и переходных. В таком случае коэффициент передачи тепла должен быть меньше 0,15 Вт/м2К.

    Современные окна – низкоэмиссионые стеклопакеты, которые заполняются инертным газом.

Принципы возведения энергоэффективного дома

Основная цель создания такого жилья – это уменьшение расхода тепловой и электро энергии, особенно в знойный период. Среди основных задач :

    простая форма периметра и здания и формы кровли;

    полная герметичность ;

    наращивание слоя теплоизоляции – не менее 15 см;

    ориентация в южную сторону;

    исключение «мостиков холода»;

    использование экологичных и теплых материалов;

    применение возобновляемой природной энергии;

    создание механической вентиляции , не только естественной.

Естественная вентиляция производит наибольшее количество тепловых потерь, а значит, ее эффективность очень низкая. Данная система летом вообще не функционирует, а зимой необходимо своевременно проветривать помещение.

Установка такого устройства, как рекуператор воздуха, дает возможность обогревать притекающий воздух. Она обеспечивает около 90% тепла за счет нагрева воздуха, а значит, что можно избавиться от привычных труб, котлов и радиаторов.

Как повысить энергоэффективность уже построенного деревянного дома

Такая процедура вполне реальна для жилых помещений в хорошем состоянии, т.е. если он не подлежит сносу через пару лет, то его возможно без проблем реконструировать. Уменьшение потерь тепла возможно при помощи современных технологий и материалов.

На первом этапе следует обнаружить места, где есть утечки. Это так называемые мостики холода, и именно они отнимают самую большую часть тепла во всем доме. Искать их нужно в крыше, стенах, дверных и оконных проемах. Погреб, подвал и чердачное помещение – это места, которые не стоит оставлять без внимания.

Грибок и плесень – это еще один показатель наличия мостиков холода, так как чаще всего они образуются в местах перепада температур, а значит, и появления конденсата.

Второй этап – это выбор утепляющих материалов. Они должны быть экологически безопасными и чистыми. Наиболее популярным вариантом является теплая штукатурка. Такой материал поможет эффективно справиться с различными стыками и разгерметизованными швами. Полиэтилен – еще один прекрасный утеплительный материал. Его толщина должна быть не меньше двухсот микрон и монтируется он под деревянной обшивкой.

Еще несколько понятий энергоэффективности

Говоря об экономичном доме, в статье была упомянута только тепловая энергия. Но ведь экономить можно еще и на электричестве и на воде. Чтобы сэкономить электричество, не обязательно отказывать себе во многих привычных и удобных вещах. Используйте автоматизированные и программируемые устройства, например, электронные выключатели с датчиками движения.

Экономить можно еще и на воде. Контролировать расход такого ресурса автоматически невозможно. Почаще следите за показателями счетчика на воду, сократите полив придомовых территорий, внедрите капельный и лимитированный полив при помощи специализированного клапана.

Видео описание

Наглядно про технологию энергоэффективного дома смотрите в видеоролике:

На нашем сайте Вы можете найти контакты строительных компаний, которые предлагают . Напрямую пообщаться с представителями можно посетив выставку домов «Малоэтажная Страна».

Заключение

Схема создания энергоэффективного дома достаточно проста. Главное – это планировать строительство экономного дома еще на этапе его проектирования. Но нужно помнить, что возведение такого умного дома предполагает изначально большие вложения, чем в случае со строительством обычного коттеджа. Однако, со временем все эти затраты окупятся и принесут свои плоды.

Энергосберегающий дом – это не идеализированное представление дома будущего, а сегодняшняя реальность, которая приобретает все большую популярность. Энергосебергающим, энергоэффективным, пассивным домом или экодомом сегодня называют такое жилище, которое требует минимум расходов на поддержание комфортных условий проживания в нем. Достигается это путем соответствующих решений в сфере , и строительства. Какие технологии для энергосберегающих домов существуют на данный момент, и сколько ресурсов они смогут сэкономить?

№1. Проектирование энергосберегающего дома

Жилище будет максимально экономным, если оно было спроектировано с учетом всех энергосберегающих технологий. Переделать уже построенный дом будет сложнее , дороже, да и ожидаемых результатов добиться будет трудно. Проект разрабатывается опытными специалистами с учетом требований заказчика, но при этом нужно помнить, что использованный набор решений должен быть, прежде всего, экономически выгодным. Важный момент – учет климатических особенностей региона .

Как правило, энергосберегающими делают дома, в которых проживают постоянно, поэтому на первое месте выходит задача сбережения тепла, максимального использования естественного освещения и т.д. Проект должен учитывать индивидуальные требования, но лучше, если пассивный дом будет максимально компактным, т.е. более дешевым в содержании .

Одним и тем же требованиям могут отвечать различные варианты . Совместное принятие решений лучших архитекторов, проектировщиков и инженеров позволили еще на стадии разработки плана возведения помещения создать универсальный энергосберегающий каркасный дом (подробнее читайте — ). Уникальная конструкция кооперирует в себе все экономически выгодные предложения:

  • благодаря технологии SIP-панелей строение обладает высокой прочностью;
  • достойный уровень термо- и шумоизоляции, а также отсутствие мостиков холода;
  • сооружение не требует привычной дорогой системы отопления;
  • с использованием каркасных панелей дом строится очень быстро и характеризуется длительным сроком службы;
  • помещения компактны, комфортны и удобны во время их последующей эксплуатации.

В качестве альтернативы можно использовать для возведения несущих стен, утепляя конструкцию со всех сторон и получая в итоге большой «термос». Часто используется древесина как самый экологичный материал.

№2. Архитектурные решения для энергосберегающего дома

Чтобы добиться экономии ресурсов, необходимо уделить внимание планировке и внешнему виду дома. Жилище будет максимально энергосберегающим, если учтены такие нюансы:

  • правильное расположение . Дом может быть расположен в меридиональном или широтном направлении и получать разное солнечное облучение. Северный дом лучше строить меридионально , чтобы увечить приток солнечного света на 30%. Южные дома, наоборот, лучше возводить в широтном направлении, чтобы уменьшить затраты на кондиционирование воздуха;
  • компактность , под которой в данном случае понимают соотношение внутренней и внешней площади дома. Оно должно быть минимальным, а достигается это за счет отказа от выпирающих помещений и архитектурных украшений типа эркеров. Получается, что самый экономный дом – это параллелепипед;
  • тепловые буферы , которые отделяют жилые помещения от контакта с окружающей средой. Гаражи, лоджии, подвалы и нежилые чердаки станут отличной преградой для проникновения в комнаты холодного воздуха извне;

  • правильное естественное освещение . Благодаря несложным архитектурным приемам можно в течение 80% всего рабочего времени освещать дом с помощью солнечных лучей. Помещения, где семья проводит больше всего времени (гостиная, столовая, детская) лучше расположить на южной стороне , для кладовой, санузлов, гаража и прочих вспомогательных помещений достаточно рассеянного света, поэтому они могут иметь окна на северную сторону. Окна на восток в спальне утром обеспечат зарядом энергии, а вечером лучи не будут мешать отдыхать. Летом в такой спальне можно будет вообще обойтись без искусственного света. Что же касается размера окон , то ответ на вопрос зависит от приоритетов каждого: экономить на освещении или на обогреве. Отличный прием – установка солнечной трубы . Она имеет диаметр 25-35 см и полностью зеркальную внутреннюю поверхность: принимая солнечные лучи на крыше дома, она сохраняет их интенсивность на входе в комнату, где они рассеиваются через диффузор. Свет получается настолько ярким, что после установки пользователи часто тянутся к выключателю при выходе из комнаты;

  • кровля . Многие архитекторы рекомендуют делать максимально простые крыши для энергосберегающего дома. Часто останавливаются на двухскатном варианте, причем чем более пологим он будет, тем более экономным окажется дом. На пологой крыше будет задерживаться снег, а это дополнительное утепление зимой.

№3. Теплоизоляция для энергосберегающего дома

Даже построенный с учетом всех архитектурных хитростей дом требует правильного утепления, чтобы быть полностью герметичным и не выпускать теплоту в окружающую среду.

Теплоизоляция стен

Через стены уходит около 40% тепла из дома , поэтому их утеплению уделяют повышенное внимание. Самый распространенный и простой способ утепления – организация многослойной системы. обшиваются утеплителем, в роли которого часто выступает минеральная вата или пенополистирол , сверху монтируется армирующая сетка, а потом – базовый и основной слой штукатурки.

Более дорогая и прогрессивная технология – вентилируемый фасад . Стены дома обшиваются плитами из минеральной ваты, а облицовочные панели из камня, металла или других материалов монтируются на специальный каркас. Между слоем утеплителя и каркасом остается небольшой зазор, который играет роль «тепловой подушки», не позволяет намокать теплоизоляции и поддерживает оптимальные условия в жилище.

Кроме того, чтобы снизить теплопотери через стены, используют изолирующие составы в местах примыкания кровли, учитывают будущую усадку и изменение свойств некоторых материалов при повышении температуры.

Принцип работы вентилируемого фасада

Теплоизоляция кровли

Через кровлю уходит около 20% тепла. Для утепления крыши используют те же материалы, что и для стен. Широко распространены на сегодняшний день минеральная вата и пенополистирол . Архитекторы советуют делать кровельную теплоизоляцию не тоньше 200 мм независимо от типа материала. Важно рассчитать нагрузку на , несущие конструкции и кровлю, чтобы не была нарушена целостность конструкции.

Теплоизоляция оконных проемов

На окна приходится 20% теплопотерь дома. Хоть лучше, чем старые деревянные окна, защищают дом от сквозняков и изолируют помещение от внешнего воздействия, они не идеальны.

Более прогрессивными вариантами для энергосберегающего дома являются:


Теплоизоляция пола и фундамента

Через фундамент и пол первого этажа теряется по 10% теплоты. Пол утепляют теми же материалами, что и стены, но можно использовать и другие варианты: наливные теплоизоляционные смеси, пенобетон и газобетон, гранулобетон с рекордной теплопроводностью 0,1 Вт/(м°С). Можно утеплить не пол, а потолок подвала, если подобный предусмотрен проектом.

Фундамент лучше утеплять снаружи, что поможет защитить его не только от промерзания, но и от других негативных факторов, в т.ч. влияния грунтовых вод, перепадов температур и т.д. В целях утепления фундамента используют напыляемый полиуретан, и пенопласт.

№4. Рекуперация тепла

Тепло из дома уходит не только через стены и кровлю, но и через . Чтобы уменьшить расходы на отопление используют приточно-вытяжные вентиляции с рекуперацией.

Рекуператором называют теплообменник, который встраивается в систему вентиляции. Принцип его работы заключается в следующем. Нагретый воздух через вентиляционные каналы выходит из комнаты, отдает свое тепло рекуператору, соприкасаясь с ним. Холодный свежий воздух с улицы, проходя сквозь рекуператор, нагревается, и поступает в дом уже комнатной температуры. В результате домочадцы получают чистый свежий воздух, но не теряют тепло.

Подобная система вентиляции может использоваться вместе с естественной: воздух будет поступать в помещение принудительно, а выходить за счет естественной тяги. Есть еще одна хитрость. Воздухозаборный шкаф может быть отнесен от дома на 10 метров, а воздуховод проложен под землей на глубине промерзания . В этом случае еще до рекуператора летом воздух будет охлаждаться, а зимой – нагреваться за счет температуры почвы.

№5. Умный дом

Чтобы сделать жизнь более комфортной и при этом экономить ресурсы, можно и техникой , благодаря которым уже сегодня возможно:

№6. Отопление и горячее водоснабжение

Гелиосистемы

Самый экономный и экологичный способ отапливать помещение и подогревать воду – это использовать энергию солнца. Возможно это благодаря солнечным коллекторам, установленным на крыше дома. Такие устройтсва легко подсоединяются к системе отопления и горячего водоснабжения дома, а принцип их работы заключается в следующем . Система состоит из самого коллектора, теплообменного контура, бака-аккумулятора и станции управления. В коллекторе циркулирует теплоноситель (жидкость), который нагревается за счет энергии солнца и через теплообменник отдает тепло воде в баке-аккумуляторе. Последний за счет хорошей теплоизоляции способен долго сохранять горячую воду. В этой системе может быть установлен нагреватель-дублер, который догревает воду до необходимой температуры в случае пасмурной погоды или недостаточной продолжительности солнечного сияния.

Коллекторы могут быть плоскими и вакуумными . Плоские представляют собой коробку, закрытую стеклом, внутри нее находится слой с трубками, по которым циркулирует теплоноситель. Такие коллекторы более прочные, но сегодня вытесняются вакуумными. Последние состоят из множества трубок, внутри которых находятся еще трубка или несколько с теплоносителем. Между внешней и внутренней трубками – вакуум, который служит теплоизолятором. Вакуумные коллекторы более эффективны, даже зимой и в пасмурную погоду, ремонтопригодны. Срок службы коллекторов около 30 лет и более.

Тепловые насосы

Тепловые насосы используют для отопления дома низкопотенциальное тепло окружающей среды , в т.ч. воздуха, недр и даже вторичное тепло, например от трубопровода центрального отопления. Состоят такие устройства из испарителя, конденсатора, расширительного вентиля и компрессора. Все они связаны замкнутым трубопроводом и функционируют на основе принципа Карно. Проще говоря, теплонасос подобен по работе холодильнику, только функционирует наоборот. Если в 80-х годах прошлого века тепловые насосы были редкостью и даже роскошью, то уже сегодня в Швеции, например, 70% домов отапливаются подобным образом.

Конденсационные котлы

Биогаз в качестве топлива

Если скапливается много органических отходов сельского хозяйства, то можно соорудить биореактор для получения биогаза . В нем биомасса благодаря анаэробным бактериям перерабатывается, в результате чего образуется биогаз, состоящий на 60% из метана, 35% — углекислого газа и на 5% из прочих примесей. После процесса очистки он может использоваться для отопления и горячего водоснабжения дома. Переработанные отходы преобразуются в отличное удобрение, которое может использоваться на полях.

№7. Источники электроэнергии

Энергосберегающий дом должен и, желательно, получать ее из возобновляемых источников. На сегодняшний день для этого реализована масса технологий.

Ветрогенератор

Энергия ветра может преобразовываться в электричество не только большими ветряными установками, но и с помощью компактных «домашних» ветряков . В ветряной местности такие установки способны полностью обеспечивать электроэнергией небольшой дом, в регионах с невысокой скоростью ветра их лучше использовать вместе с солнечными батареями.

Сила ветра приводит в движение лопасти ветряка, которые заставляют вращаться ротор генератора электроэнергии. Генератор вырабатывает переменный нестабильный ток, который выпрямляется в контроллере. Там происходят зарядка аккумуляторов, которые, в свою очередь, подключены к инверторам, где и идет преобразование постоянного напряжения в переменное, используемое потребителем.

Ветряки могут быть с горизонтальной и вертикальной осью вращения. При разовых затратах они надолго решают проблему энергонезависимости.

Солнечная батарея

Использование солнечного света для производства электроэнергии не так распространено, но уже в ближайшем будущем ситуация рискует резко измениться. Принцип работы солнечной батареи очень прост: для преобразования солнечного света в электричество используется p-n переход. Направленное движение электронов, провоцируемое солнечной энергией, и представляет собой электричество.

Конструкции и используемые материалы постоянно совершенствуются, а количество электроэнергии напрямую зависит от освещенности. Пока наибольшей популярностью пользуются разные модификации кремниевых солнечных батарей , но альтернативой им становятся новые полимерные пленочные батареи, которые пока находятся в стадии развития.

Экономия электроэнергии

Полученное электричество нужно уметь расходовать с умом. Для этого пригодятся следующие решения:


№8. Водоснабжение и канализация

В идеале, энергосберегающий дом должен получать воду из скважины , расположенной под жилищем. Но когда вода залегает на больших глубинах или качество ее не отвечает требованиям, от подобного решения приходится отказываться.

Бытовые стоки лучше пропускать через рекуператор и отбирать у них теплоту. Для очистки сточных вод можно использовать септик , где преобразование будет совершаться за счет анаэробных бактерий. Полученный компост является хорошим удобрением.

Для экономии воды неплохо бы уменьшить объем сливаемой воды. Кроме того, можно воплотить в жизнь систему, когда вода, используемая в ванной и раковине, применяется для слива в унитазе.

№9. Из чего строить энергосберегающий дом

Конечно же, лучше использовать максимально природное и натуральное сырье, производство которого не требует многочисленных стадий обработки. Это древесина и камень . Предпочтение лучше отдавать материалам, производство которых осуществляется в регионе, ведь таким образом снижаются растраты на транспортировку. В Европе пассивные дома стали строить из продуктов переработки неорганического мусора. , стекло и металл.

Если один раз уделить внимание изучению энергосберегающих технологий, продумать проект экодома и вложить в него средства, в последующие годы расходы на его содержание будут минимальными или даже стремиться к нулю.

Расчитайте приблизительную стоимость строительства энергоэффективного дома, используя строительный калькулятор .

Что же такое энергоэффективный дом?

 Это дом, в котором:

  • обеспечиваются минимальные потери тепла через ограждающие конструкции за счет увеличения толщины теплоизоляции стен и применения эффективных современных утеплителей
  • применяются окна и наружные двери с высоким сопротивлением теплопередачи
  • обеспечивается высокая герметичность здания и контролируется весь воздухообмен с помощью приточно-вытяжных вентиляционных систем с рекуперацией тепла, что снижает потери тепла при вентиляции помещения
  • Выполнение вышеуказанных условий обеспечивает в доме низкое и сверхнизкое энергопотребление. В Германии хорошими показателями энергоэффективного дома считаются, когда на 1 м² отапливаемой площади в год расходуется не более 1,5…3 литра условного топлива, т.е. не более 15...30 кВт ч/м² в год.

    По теории немецких ученых, в любой местности есть свои специфические (для данной местности) природные возобновляемые источники, которые в случае низкого энергопотребления могут полностью заменить традиционные источники энергоресурсов и обеспечить комфортное проживание в доме.

    Низкое энергопотребление дома дает возможность использовать возобновляемые источники энергии окружающей среды. При этом источники энергии могут быть различных видов: геотермальная энергия Земли, солнечная энергия, энергия ветра, энергия воды. В приморской зоне, например, ветрогенераторы и приливные электростанции . В горной местности - ветрогенераторы и геотермальные системы . В равнинной местности - геотермальные, солнечные установки и т.д. Такое использование окружающей среды является экологически безопасным, обеспечивает сохранность окружающей среды, а самое главное, дает независимость от постоянно растущих цен на энергоресурсы.

    Несмотря на высокую стоимость оборудования, необходимого для получения тепла из возобновляемых источников энергии, оно становится конкурентоспособным традиционному оборудованию, работающему на газе, электричестве, дровах и угле, так как текущие эксплуатационные затраты минимальны и практически не зависят от роста цен. К тому же за последнее время стоимость этого оборудования, которое в недалеком прошлом была фантастической, значительно снизилась и с каждым годом продолжает снижаться.

    Строительство индивидуальных малоэтажных энергоэффективных жилых домов в России

    В настоящее время, индивидуальные малоэтажные энергоэффективные дома для большинства населения России являются несбыточной мечтой. Единичные экземпляры, построенные в последнее время, по стоимости (более 100 тыс. руб./м²) значительно превышают стоимость обычных домов, рассчитанных по действующим в России нормам.

    Специалистам ООО «ИнтерСтрой» была поставлена задача, разработать проект и построить опытный образец энергоэффективного индивидуального малоэтажного дома, по стоимости, не превышающей среднюю стоимость обычного загородного дома (ориентировочно не более 60 тыс. руб./м²).

    В дальнейшем, по итогам мониторинга эксплуатационных свойств строящегося здания, планируется продолжить оптимизацию затрат и снизить стоимость строительства еще на 10-15%. Такое условие необходимо для реализации массового строительства домов такого класса в местности с ограниченными энергоресурсами (отсутствие электричества, газа).

    Предварительный выбор основных архитектурных и технических решений

    До принятия основного варианта «пилотного проекта» индивидуального малоэтажного жилого дома, специалистами ООО «Институт пассивного дома», были проанализированы несколько вариантов планировочных и конструктивных решений, а также сделаны предварительные расчеты для подбора видов утеплителей и их толщин.

    С целью снижения стоимости дома, была принята прямоугольная форма дома в плане, позволившая минимизировать объем наружных стен на единицу площади здания.

    Особое внимание было уделено выбору конструкции наружных стен. В результате сравнения различных материалов (кирпич, пеноблоки, деревянный каркас и т.д.), в качестве несущих и ограждающих конструкций, было решено использовать монолитные железобетонные конструкции. Бетонные стены имеют плотную структуру, что позволяет более качественно выполнить требуемую герметизацию внутреннего объема, необходимого для контроля и управления воздухообменом с целью минимизации тепловых потерь и максимального сохранения тепла (до 80%). Также обеспечивается высокая несущая способность при минимальных толщинах, что существенно снижает объем конструкций и уменьшает стоимость и сроки выполнения работ.

    В качестве утеплителя, среди огромного многообразия материалов представленных на сегодняшний день (жесткие, мягкие, минеральные, синтетические, «задувные» и т.п.), был выбран плитный минераловатный утеплитель нового поколения, производимый компанией «SAINT-GOBAIN» . Кроме того, была достигнута договоренность о совместной разработке с компанией «SAINT-GOBAIN» узлов крепления утеплителя (толщиной 400 мм и более) к бетонной поверхности наружных стен.

    Внешний вид здания

    Основные проектные решения здания

    Архитектурно-планировочные решения

    Архитекторами была принята модульная концепция планировки здания, при использовании которой, можно реализовать примыкание модулей в различных направлениях.

    Модуль представляет квадрат с внутренними размерами 9,6×9,6 метров общей площадью около 90 м². Квадратная форма была принята для снижения материалоемкости наружных дорогостоящих стен из расчета на 1 м² площади.

    Модульная планировка дает возможность строить дома площадью: 90 м², 135 м², 180 м², 225 м², 270 м² и т.д.

    Фундамент

    Фундамент выполнен в виде монолитной железобетонной плиты толщиной 300 мм, cтены подвального этажа выполнены из монолитного железобетона толщиной 150 мм.

    Конструкции стен первого, второго и третьего этажей

    Наружные стены – несущие, выполнены из монолитного железобетона толщиной 150 мм с последующим утеплением минераловатными плитами, с наружной отделкой вентилируемыми фасадами и частично штукатурными фасадами. Внутренние стены, кроме двух простенков лестницы и первого простенка коммуникационной шахты, могут выполняться из любых стеновых материалов по желанию заказчика (кирпич, пазогребневые блоки, ГКЛ и т.п.).

    Перекрытия

    Междуэтажные перекрытия - безбалочные монолитные железобетонные, толщиной 160 мм, с опорой на наружные стены, простенки лестницы и коммуникационной шахты. Монолитное перекрытие с большим пролетом дает возможность архитекторам, при оформлении интерьера, выполнить любую индивидуальную планировку и удовлетворить самые строгие запросы заказчика.

    Кровля

    Кровля принята частично не эксплуатируемой с односкатным радиусным закруглением с внутренним водостоком и частично эксплуатируемой с плоским скатом. Утепление радиусной кровли принято из минераловатных плит «ISOVER» толщиной 600 мм. Утепление плоской кровли – 450 мм экструзивного пенополистирола. Различные решения приняты для того, чтобы показать возможность использования в данном проекте разнообразных видов кровель (как плоских, так и сложных с криволинейным контуром, а также различных видов одно, двух, четырех скатных).

    Тепловая оболочка здания

    Утепление здания начинается с основания под фундаментную плиту утеплителем из экструзивного пенополистирола толщиной 300 мм. Далее осуществляется утепление стен подвала утеплителем XPS толщиной 350 мм. Утепление наружных стен выполнено минераловатными плитами толщиной 400 мм. Для утепления кровли, парапетов и карнизов используются утеплители с малым объемным весом, как плотной структуры, так и неплотной (экструдированный пенополистирол, «ISOVER» и т.п.). Выбор различных материалов теплоизоляции связан с тем, что утеплению подлежат конструкции, работающие в разных условиях (фундамент, стены подвала, наружные стены, кровля).

    Для крепления полужесткого утеплителя на стенах разработаны 2 варианта подсистем вентилируемого и «мокрого» фасада. Одна подсистема состоит из двутавровых балок, выполненных из ОSB, установленных вертикально, с заполнением пространства между фермами утеплителем типа «ISOVER». Вторая - из металлических кронштейнов и деревянных брусков, выполненных в виде каркаса, с заполнением утеплителем типа «ISOVER». Совместно с компанией «Saint-Gobain» продолжаются разработки и других видов унифицированных подсистем с целью их удешевления и улучшения характеристик (для возможности крепления утеплителя толщиной 400 мм, 500 мм и более).

    Наружное остекление и двери

    В связи с тем, что тепловой расчет экспериментального дома производился по стандартам Германии, архитекторам была поставлена сложная задача. При проектировании остекления дома строго учитывалась ориентация дома по сторонам света. Минимальное остекление принято на северной стороне, максимальное - на южной. В жаркое летнее время на фасаде дома предусмотрена система автоматической солнцезащиты. С целью снижения теплопотерь предусмотрен один вход. Применяемые окна и двери должны удовлетворять следующим требованиям проекта: Rо = 1,19 – 1,20 (м² С)/Вт.

    Наружные декоративные элементы фасадов

    Имеются различные технические решения, которые позволяют снять проблемы промерзания через эти элементы. Однако они нередко дороги и использование их в строительстве приведет к излишнему удорожанию. Поэтому в данном проекте элементами отделки фасада являются различные сочетания вентилируемого фасада и наружной фасадной штукатурки. Имеющиеся в настоящее время на строительном рынке разновидности этих материалов позволяют удовлетворить вкус самого требовательного заказчика.

    Умелое сочетание различных видов отделки вентилируемых фасадов, использование различных цветов наружной окраски участков стен, а также применение разных конструкций кровли позволяет архитекторам предложить заказчикам большое разнообразие не похожих друг на друга домов.

    Внутренняя планировка

    Все помещения с максимальным пребыванием людей сосредоточены с южной стороны, где возможно максимальное остекление. Помещения технического и бытового назначения располагаются в основном с северной стороны, где наружное остекление отсутствует или оно минимальное. От помещений с двойным светом решено было отказаться, ввиду значительного ухудшения теплотехнических характеристик здания.

    Инженерное оборудование дома

    Водоснабжение

    На территории участка предусмотрена скважина. Скважина обеспечивает все потребности дома. Автоматика управления насосом и все оборудование для подачи воды находится в колодце, оборудованном над оголовком скважины.

    Внутри здания в подвале предусмотрен узел ввода, оборудованный необходимой запорной арматурой, фильтрами тонкой очистки воды и счетчиками расхода воды.

    Подогрев горячей воды осуществляется совместно с помощью теплового насоса и солнечных коллекторов, а в случае отказа одной из систем – подогрев обеспечивается с помощью резервного источника (в данном проекте – газовый котел).

    В случае поломки насоса, в доме предусмотрен аварийный запас питьевой воды в объеме 1000 литров.

    Водостоки и ливневая канализация

    Кровля состоит из плоской части с площадью около 45 м² и односкатной с переменным уклоном - 75 м². На плоской кровле сток воды осуществляется по уклонам в сторону воронок, расположенных в углах здания. На наклонной кровле сток воды также осуществляется по уклонам к водосточным воронкам, находящимся в самых нижних точках по углам здания.

    Вся отведенная дождевая и талая вода направляется в дренажные колодцы пристенного дренажа дома.

    Возможно применение на плоской кровле внутренних водостоков с накопительной емкостью дождевой воды в подвале или заглубленной емкости в земле (для использования на полив).

    Канализация

    Проектом предусмотрены два вида канализации:

    1. Для подвала предусмотрена напорная канализация с использованием установки СОЛОЛИФТ (для санузла, душевых кабин и трапа сбора воды с пола моечного помещения и сауны) и дренажного насоса (для откачки воды из приямка технического помещения в процессе эксплуатации).

    2. Для остальной части дома предусмотрена самотечная канализация с одним вертикальным стояком в технологической шахте, горизонтальным участком под потолком подвала и выпуском из здания в подвале на высоте 1 м от чистого пола.

    Самотечная канализация выводит бытовые стоки в септик. Септик марки «Тверь», предусмотренный в данном проекте, расположен в 3-х метрах от северной стены дома.

    Отопление

    Изначально в данном проекте ставилась задача использования нетрадиционных, экологически чистых, возобновляемых энергетических источников тепла. Было принято использовать в качестве энергетического источника тепловые насосы (использующие геотермальное тепло Земли) и солнечные коллекторы, использующие энергию Солнца. Вырабатываемое этими установками тепло, по расчетам организации ООО «Компания ЭНСО ИНТЕРНЭШНЛ», достаточно для подогрева воды и обеспечения дома теплом на протяжении всего года. В связи с тем, что теплопотери энергоэффективного дома значительно ниже, чем в обычном доме, то требуемая мощность тепловых установок не превышает 10 кВт.

    Обеспечение получения этой мощности возможно с двух скважин общей глубиной около 200 м (50 Вт с каждого погонного метра скважины на 200 метров = 10 кВт).

    В качестве резервной энергетической установки принят газовый котел (возможны и другие виды энергетических установок: котлы, работающие на дровах, угле, дизельном топливе, электричестве и т.д.).

    Проект отопления с помощью совместной работы теплового насоса и солнечного коллектора выполнен организацией ООО «Компания ЭНСО ИНТЕРНЭШНЛ».

    В данном проекте для отопления и ГВС предложена модульная система TYRRO c геотермальным грунтовым (горизонтальным или вертикальным) теплообменником и функцией «freecooling» в летнее время.

    Солнечные коллекторы предлагается ставить на специальных кронштейнах на плоской кровле с южной или юго-западной стороны здания. Их площадь определяется в процессе проектирования, исходя из архитектурных и инженерных соображений. Солнечное тепло в летнее время будет направлено на подогрев грунта в месте установки грунтового теплообменника, а также на подогрев воды в бассейне и воды для полива растений. В зимнее время часть низкотемпературного тепла будет направлено на подогрев теплового насоса.

    Также предусматривается подогрев воздуха через систему вентиляции в зимнее время, и охлаждение в летнее время. Во время, когда тепловой насос будет нагревать воду, с другой стороны насоса в испарительном контуре (коллектор, находящийся в земле) будет охлаждаться грунт, повышая эффективность охлаждения в режиме «freecooling» .

    Вентиляция

    В настоящем проекте дома предусмотрена принудительная вентиляция с применением приточно-вытяжных вентиляционных установок с рекуперацией тепла. Применение принудительной вентиляции имеет как достоинства, так и недостатки.

    Недостатками этой системы, по сравнению с естественной вентиляцией, являются:

  • постоянная работа вентиляционного оборудования и шум от его работы
  • большие единовременные затраты на оборудование и его последующее сервисное техническое обслуживание
  • необходимость в замене фильтров очистки воздуха
  • Достоинством является - возможность качественной очистки подаваемого воздуха, что является важным показателем для здоровья людей, особенно страдающих аллергическими и легочными заболеваниями. Чистота окружающего воздуха, как в городе, так и в сельской местности, оставляет желать лучшего. В городе - копоть, отработанные газы машин и т.п. В сельской местности - микрочастицы от цветения растений, вызывающих аллергические заболевания и т.п.

    Контроль и управление воздухообменом дает возможность обеспечить в любом помещении, в зависимости от ситуации, поступления достаточного количества воздуха, соответственно и кислорода, что качественно улучшает работу организма человека, особенно его мозга.

    Возможность рекуперации тепла от уходящего в атмосферу воздуха дает главную экономию энергопотребления. Современные установки рекуперации позволяют возвращать до 90% тепла, выбрасываемого из дома вместе с воздухом в системах традиционной естественной вентиляции. Это позволяет значительно снизить эксплуатационные затраты по теплу и дает значительную экономию бюджета.

    Для обеспечения в доме вентиляции в случае отключения электричества, предусмотрена система естественной вентиляции. Для обеспечения ее работы и возможности циркуляции воздуха предусмотрены окна с режимом микропроветривания.

    Для отвода отработанных газов от газового котла, являющегося резервным источником тепла, предусмотрен отдельный дымоход с выходом на крышу. Забор воздуха для работы котла осуществляется с улицы, а не из помещений.

    Электрика

    Согласно техническим условиям, на участок, где строится дом, выделено 10 кВт электроэнергии. Подключение дома осуществляется от распределительного электрического щита, установленного на столбе освещения.

    В доме имеется свой распределительный щит. Предусмотрен стабилизатор напряжения. Горизонтальная разводка кабельных линий осуществляется на потолке (в кабель-каналах, лотках, в трубках ПНД). Вертикальная разводка питающих этажных кабельных линий - в технологической шахте в кабель-канале, а также скрытая по стенам, в штрабе, с последующей штукатуркой и окраской. Для подключения оборудования принята отдельная питающая линия.

    Предусмотрено резервное электрообеспечение от небольшого дизельного генератора, который обеспечивает работу инженерного оборудования в случае аварийного отключения. Подключение и работа генератора происходит в автоматическом режиме и рассчитана на 8-10 часов бесперебойной работы. За это время все инженерные системы должны быть переведены в специальный режим или отключены (в зависимости от назначения того или другого оборудования).

    Заземление

    В доме предусмотрено заземление, принятое строительными нормами и правилами.

    Молниезащита

    В доме, для защиты в летнее время от молнии, предусмотрена молниезащита, которая соответствует действующим в России требованиям безопасности.

    Эксплуатационные затраты и преимущества
    энергоэффективного дома

    Учитывая непрекращающийся в России рост цен на коммунальные услуги и энергоресурсы, дома такого класса дают возможность их владельцам значительно легче пережить повышающиеся затраты на услуги ЖКХ.

    Представленный ниже рост цен на электричество и газ, не говоря о росте стоимости горячей воды, технического обслуживания и эксплуатации жилья показывает, что он в разы превышает статистический рост зарплаты среднего работающего россиянина. В случае, сохранения имеющейся динамики роста цен на услуги ЖКХ и роста средней зарплаты, в течении нескольких лет, оплата коммунальных услуг составит существенный, а может быть и основной объем расходов в бюджете рядовых российских граждан.

    Динамика фактического роста цен на газ и электричество
    с 2004 по 2014г.г. и, в случае сохранения имеющейся динамики
    роста цен, на период с 2014 по 2024г.г.

    По предварительным расчетам, дополнительные общестроительные затраты на обеспечение энергоэффективности здания и затраты на применение современного дорогостоящего инженерного оборудования, использующего альтернативные источники энергии, при действующих тарифах, оправдываются уже за 5-6 лет эксплуатации. С учетом прогнозируемого роста тарифов, в ближайшее время, срок окупаемости может сократиться до 2 лет.

    Оценка затрат на отопление обычного дома с энергопотреблением порядка 150 кВт ч/м² год и энергоэффективного дома 25-30 кВт ч/м² год позволяет сделать вывод, что затраты на различные виды энергоресурсов (газ, электричество и т.д.) при эксплуатации энергоэффективного дома снижаются в 5-6 раз, и в случае продолжения роста тарифов, о чем свидетельствуют последние 10 лет, экономия только на отоплении поможет сохранить ваш бюджет.

    Далее приведены расходы на отопление обычного дома с энергопотреблением 150 кВт ч/м² год и энергоэффективного дома с энергопотреблением 28 кВт ч/м² год с одинаковыми площадями по 300 м², и использованием различных типов энергоустановок (электрический котел, тепловой насос, газовый котел).

    Расходы при эксплуатации элэктрического котла, руб./год

    Расходы при эксплуатации газового котла, руб./год

    Год Обычный дом Энергоэффективный дом
    2024 116 545 21 755
    2019 45 556 8 504
    2014 27 303 5 097
    2009 10 062 1 878
    2004 5 966 1 114

    В заключении

    В процессе проектирования энергоэффективного дома, инженеры и архитекторы компании ООО «ИнтерСтрой», изучали опыт работы, консультировались у специалистов, как отечественных, так и зарубежных организаций, работающих в этом направлении. Многие из достижений и рекомендаций, которые достойны внимания, были реализованы при разработке индивидуального малоэтажного жилого дома серии «ИС-33э» .

    Строительство энергоэффективных домов в России находится на начальной стадии своего развития. В процессе работы над данным проектом стало очевидным, что используемые нами современные достижения, технологические и технические решения - это только малая часть того, что используется в настоящий момент в зарубежных странах.

    Нами запланировано много работы по изучению и внедрению отечественных и зарубежных разработок, которые наиболее оптимально подходят к климатическим условиям России.

    Компанией ООО «ИнтерСтрой» запланировано несколько направлений по строительству энергоэффективных домов. Ниже представлены некоторые из них:

    .

    1. Продолжение поиска наиболее оптимальных архитектурных и технических решений с применением в конструкциях здания различных типов материалов, как традиционных, так и новых, более эффективных материалов для достижения снижения энергопотребления (ниже 28 кВт ч/м² год).

    2. Вести дальнейшую работу по подбору инженерного оборудования и систем, работающих на возобновляемых источниках энергии, а также совмещать их с традиционным оборудованием, работающем на газе, электричестве, дизельном топливе, угле, дровах и т.д.

    3. Завершить в текущем году строительство опытного образца индивидуального малоэтажного энергоэффективного дома (28 кВт ч/м² год), по стоимости, не превышающей среднюю стоимость (по московскому региону) обычного дома.

    4. Произвести на данном объекте (после окончания строительства - следующие 2-3 года) комплексный мониторинг показателей работы инженерных систем и конструкций здания, что позволит:

  • повысить эффективность методик расчета энергоэффективности, применяемых к климатическим условиям России
  • проанализировать используемые строительные конструкции, строительные материалы, инженерное оборудование, технологические и технические решения для оценки возможности их дальнейшего применения
  • получить фактические расходы и эксплуатационные затраты по дому, с соответствующей расшифровкой по каждому направлению (отопление, ГВС, вентиляция, охлаждение, электроэнергия для инженерного оборудования, бытовых приборов и т.д.)
  • подготовить проектные, технические и технологические решения, для возможного снижения энергопотребления при строительстве последующих объектов, обеспечив конкурентоспособную стоимость, по сравнению со стоимостью обычного дом
  • Данные мониторинга необходимы для оптимизации и снижения стоимости строительства и последующих затрат. В свою очередь, снижение стоимости энергоэффективного дома, до стоимости, сопоставимой со стоимостью обычного дома, позволит ему занять достойное место на рынке жилья.

    Очевидно, что для любого Клиента, которому не безразлично его финансовое благополучие в будущем, выбор строительства энергоэффективного дома будет правильным решением .

    Заказчик изначально сформулировал следующие требования.

    Первое-построить из клеёного бруса дом для семьи из пяти человек, а рядом с ним соорудить гараж на два автомобиля с жилым вторым этажом, в котором необходимо разместить все технические системы обслуживания основного здания. Второе- оба строения должны обогреваться одним котлом, работающим на , расход которых будет максимально экономным.

    Источником тепла во всех помещениях дома станут тёплые водяные полы, в гараже - радиаторы.

    Третье - помимо отопления и ГВС оборудовать жилище системой вентиляции с подогревом и охлаждением воздуха, при этом расход электроэнергии должен быть минимальным. Четвёртое - предусмотреть систему аварийного электроснабжения и отопления, чтобы даже в экстренных случаях (если полностью иссякнет запас пеллет) все её элементы бесперебойно функционировали в любое время года.

    От “энергоэффективной” идеи к расчётам

    Специалисты компании, принявшей столь необычный заказ, не сразу взялись за проектирование строений. Для начала выполнили теплотехнические расчёты, с помощью которых определили, сколько тепла должен вырабатывать котёл, обогревающий водяные полы, и каковы предполагаемые теплопотери через строительные конструкции двух строений. Эти расчёты убедительно доказали, что расход пеллет будет экономным, только если сопротивление теплопередаче ограждающих конструкций удастся максимально приблизить к характеристикам «пассивного» дома: стены - 6 м2 °С/Вт, цокольное перекрытие - 4,5 м2 °С/Вт, крыша-9 м2 °С/Вт. То есть сложенные из клеёного бруса стены придётся дополнительно утеплять. Заказчик одобрил эту идею, а заодно и ряд предложенных компанией технических решений.

    По замыслу проектировщиков, оба строения будет отапливать установленный в гараже котёл максимальной мощностью 35 кВт, оснащённый двумя камерами сгорания: одна (основная) - на пеллетах, вторая (резервная) - на дизельном топливе. Теплоноситель и горячая вода из гаража станут подаваться в дом по утеплённым магистралям.

    В гараже предусматривается помещение для хранения пеллет, запас которых придётся пополнять не чаще 1 раза в месяц. В том же здании будет находиться и хранилище дизельного топлива, рассчитанное как минимум на полумесячный объём.

    Подогревать и охлаждать воздух для системы вентиляции, а также частично подогревать воду для системы отопления и ГВС станет тепловой насос типа «вода-воздух».

    Аварийное электроснабжение обоих строений обеспечит дизель-генератор, тоже расположенный в гараже.

    От расчётов к проекту энергоэффективного дома

    После того как заказчик одобрил предложенные технические разработки, специалисты компании приступили к проектированию комплекса из двух строений. При этом им пришлось выработать целый ряд оригинальных решений, позволивших обеспечить энергосберегающие характеристики конструкции дома. Кратко рассмотрим некоторые из них.

    Цокольное перекрытие

    Потери тепла через цокольное перекрытие могут составлять до 20 % от общих теплопотерь через строительные конструкции дома. Очевидно, что эти потери не удастся снизить без мощного утепления. Вот только как совместить теплоизоляцию с достаточно прочным полом, коммуникациями и системой тёплых водяных полов, чтобы общая толщина пирога не оказалась слишком большой?

    Проектировщики создали многослойную конструкцию, в которой отделанную керамогранитом поверхность пола отделяют от грунта, засыпанного между лентами фундамента, несколько слоев (снизу вверх): 50 мм экструдированного пенополистирола, монолитная железобетонная плита толщиной 110 мм (именно она несёт основные нагрузки), 160 мм пенополист ролбетона плотностью 300 кг/м 3 (здесь проложены коммуникации) и, наконец, цементно-песчаная стяжка толщиной 70 мм, в нижней трети которой уложены трубы тёплого водяного пола.

    Необычный многослойный пирог полностью соответствует требованиям как по прочности, так и по энергосбережению- его приведённое сопротивление теплопередаче составляет 4.62 м 2 °С/Вт.

    Проект реализовывали в несколько этапов. На стадии строительства основания грунт, засыпанный между лентами фундамента, прикрыли плитами экструдированного пенополистирола и поверх них отлили армированную монолитную плиту. Далее возвели коробку дома, проложили по бетонной плите все необходимые коммуникации, а затем скрыли их в слое пенополистирол-бетона толщиной 160 мм.

    Поверх него смонтировали трубы тёплых водяных полов и прикрыли их бетонной стяжкой, верхний уровень которой расположили на 50 мм выше поверхности труб (в соответствии с технологией монтажа выбранной марки полов). Ну а уже при чистовой отделке помещений на стяжку наклеили плитки керамогранита.

    Выбор утеплителя

    В качестве утеплителя было решено использовать задувную теплоизоляцию GUTEX Thermofibre на основе древесного волокна. Сырьём для её производства служит щепа из древесины хвойных пород, которую размалывают на древесные волокна. После этого в состав уже практически готового материала вводят минимальное количество повышающих био- и огнестойкость добавок, пакетируют и упаковывают продукт.

    По уровню теплопроводности материал соответствует современным эффективным утеплителям (0,039 Вт/ (м К), обладает хорошими звукоизоляционными свойствами, прост в использовании. Но главное - он «не усаживается» со временем и почти не меняет свои теплосберегающие характеристики даже при проникновении влаги, что обусловлено прежде всего структурой материала. Секрет в том, что влага поступает прежде всего в капилляры волокон, пространства между которыми заполнены воздухом.

    В результате утеплитель способен впитывать и испарять влагу в объёме до 10 и даже 20 л/м 3 , а потом возвращать её обратно. Не менее важен и тот факт, что коэффициент удельной теплоёмкости GUTEX Thermofibre в 2-3 раза превышает аналогичный показатель минеральной ваты. Аккумулируя тепло (или холод), а также влагу, утеплитель способствует поддержанию в помещениях здорового микроклимата.

    Поскольку процесс задувки материала в полости строительных конструкций достаточно подробно показан на фотографиях, добавим лишь, что подобный утеплитель допустимо укладывать слоем толщиной 400 мм, который устойчив к оседанию только в том случае, если его плотность не ниже 29 кг/м 3 .

    Поэтому плотность уже уложенного слоя приходится постоянно контролировать в процессе задувки. Для этой цели используется приспособление, напоминающее высокий металлический стакан с острым верхним краем. Таким стаканом прорезают отверстия в пароизоляции, чтобы поместить в утепляемую полость шланг, по которому подаётся утеплитель.

    Им же отбирают пробы: после окончания задувки полости с помощью стакана вырезают столбик утеплителя на всю его толщину, взвешивают и по таблице определяют плотность. Если она недостаточна, задувку продолжают. Когда плотность в норме, утеплитель возвращают на место и прорезанное стаканом отверстие заклеивают.

    На крыше задувную теплоизоляцию прикрывают слоем другого материала на основе древесного волокна - дождестойкими подкровельными теплоизоляционными плитами GUTEX Multiplex-Top толщиной 35 мм. Этот утеплитель имеет чуть более высокую теплопроводность, чем задувной (0,044 Вт/(м К), но обладает большей плотностью и прочностью, а главное, за счёт введения добавки парафина не боится воды и даже может в течение 3 мес. использоваться в качестве временного кровельного покрытия.

    Внешние стены энергоэффективного дома

    Прочностные и теплотехнические расчёты показали, что если сложить внешние стены из клеёного бруса шириной 120 мм, а затем утеплить их изнутри дома с помощью задувной теплоизоляции на основе древесного волокна слоем 200 мм, то и несущая способность, и теплоизоляционные свойства будут соответствовать требуемому уровню. Однако заказчик с этим выводом не согласился и принял решение использовать клеёный брус шириной 160 мм. В результате приведённое сопротивление теплопередаче стен после их утепления изнутри дома задувной изоляцией слоем толщиной 200 мм составило 6,62 м2 °С/Вт.

    Тёплые внешние стены дополняют энергосберегающие деревянные окна. Их рамы и створки состоят из четырёх чередующихся по направлению слоев древесины (сосна) и имеют толщину 80 мм. В трёхкамерных стеклопакетах использовано низкоэмиссионное стекло, а междустекольное пространство заполнено аргоном. В результате коэффициент теплопередачи окон составляет 0,9 Вт/(м 2 К), а индекс снижения шума колеблется от 32 до 40 дБ.

    Отопление энергоэффективного дома и его вентиляция

    Основным источником тепла для системы отопления и ГВС является котёл Wirbel EKO-CK Plus, оснащённый двумя камерами сгорания: основная работает на пеллетах, резервная - на дизельном топливе. Пеллеты в горелку котла подаются из металлического бункера, размещённого в непосредственной близости от котла, - здесь хранится примерно недельный запас топлива.

    За стеной котельной расположено помещение для хранения пеллет (из расчёта на месяц) - они подаются в бункер автоматически с помощью шнекового транспортёра. Переход с пеллет (если они закончились) на дизельное топливо также автоматизирован. Подача последнего осуществляется из смежного с котельной помещения, где установлены две ёмкости из полимерного материала объёмом по 500 л.

    Кроме котла в помещении топочной находятся два бойлера, один из которых (1000 л) подогревает техническую воду, второй (500 л) - воду, поступающую в краны в кухне и санузлах.

    Рядом с бойлерами расположен корпус теплового насоса, который используется как для подогрева или охлаждения воздуха для системы вентиляции (процесс происходит в канальном теплообменнике), так и для получения горячей воды. Причём летом, когда отопительный котёл не работает, тепловой насос полностью берёт на себя функцию подогрева воды. Эта работа в основном выполняется в ночное время, когда тариф на электроэнергию минимален (чем и объясняется большая ёмкость бойлеров). Переключение теплового насоса с нагрева (охлаждения) воздуха на подогрев воды и обратно выполняется автоматически. Приток и отток воздуха из жилых помещений осуществляется по пластиковым теплоизолированным воздуховодам - после выхода из теплообменника они поднимаются на перекрытие первого этажа и затем распределяются по помещениям обоих этажей.

    К нашему рассказу о строительстве энергоэффективного дома остаётся добавить совсем немного. Для того чтобы обеспечивать жилище теплом, в первую очередь возвели гараж. Последний строили по каркасно-панельной технологии, поэтому он оказался не столь тёплым, как дом, но зато был собран всего за пять дней.

    Строительство энергоэффективного дома из клееного бруса – ход работы над проектом

    1. Главный дом (240 мг) и гараж на две машины с жилым вторым этажом (площадь 160 м 2), на котором находятся рабочий кабинет хозяина и комнаты для гостей, неотделимы друг от друга, ведь в гараже расположены все системы жизнеобеспечения этого комплекса.

    2-6. Для устройства фундамента отрыли траншеи глубиной от 1 до 1,5 м (участок имеет уклон), дно которых уплотнили щебнем. Далее в траншеи из бетона В7,5 залили «подготовку» 500 х 100 мм и, когда бетон затвердел, настелили на него гидроизоляцию и смонтировали арматурный каркас (2). Потом в траншеи установили опалубку (3) и из бетона класса В22.5 отлили ленты шириной 360 мм (высота над землёй 200-500 мм) (4). Пространство между ними засыпали песком, поверх настелили плиты из 50 мм (5). На них уложили арматурный каркас и отлили монолитную бетонную плиту (бетон В22.5) толщиной 110 мм (6).

    7-9. Стены дома сложили из клеёного профилированного бруса сечением 160 х 185 мм (Шх В). Деревянные нагели и резьбовые шпильки при сборке не использовали, что допустимо лишь при качественном брусе (7). А вот сборные балки и прогоны (8, 9) не только стянули шпильками, но и попарно скрепили составляющие их брусья саморезами длиной 400 мм, закручиваемыми под углом

    10-12. Междуэтажное перекрытие в каждом помещении сооружали индивидуально, используя деревянные балки сечением 260 х 140 или 200 х 100 мм (в зависимости от длины пролёта). К стенам и друг к другу балки крепили металлоэлементами.

    13-17. Стропильную систему восьмискатной крыши возвели, используя двутавровые балки высотой 400 мм с полками (ширина 64 мм) из дерева и соединяющими их стенками из ОСП-плиты толщиной 10 мм (15). Монтаж конструкции начали с установки балок в ендовах (13) - спаренных двутавровых конструкций длиной 9 м, стенки которых были с двух сторон усилены досками толщиной 24 мм. Стропила из одинарных двутавровых балок монтировали с шагом по осям 600 мм. К несущим составным балкам, прогонам и внешним брусовым стенам их крепили с помощью металлоэлементов (14,16,17).

    18-20. На свесах крыши устроили сплошной настил из досок сечением 97 х 20 мм (18). На утепляемых участках крыши поверх стропил сделали сплошной настил из дождестойких подкровельных теплоизоляционных плит на основе древесного волокна GUTEX Multiplex-Top толщиной 35 мм (19, 20). Плиты соединяются между собой с помощью системы шипов и пазов (что позволяет располагать их стыки, не сообразуясь с шагом стропил) и крепятся к стропилам оцинкованными саморезами.

    21. Снизу к стропилам прикрепили мембрану INTELLO PLUS и прижали её обрешёткой из доски сечением 90 х 20 мм. Далее на обоих этажах соорудили каркасы межкомнатных перегородок из доски сечением 150 х 45 мм.

    22-25. По периметру наружных стен изнутри дома прикрепили каркасные конструкции из доски 200 х 24 мм (22, 25), соединив их с брусом скользящим способом (23, 24).

    26, 27. К каркасу вдоль внешних стен прикрепили пароизоляцию (26), проклеив стыки полотен специальным скотчем, и прижали её рейками обрешётки (27).

    28. Прежде чем приступать к утеплению наружных стен и крыши, в оконных проёмах на скользящей посадке установили обсадные коробки, а затем к ним прикрепили рамы энергосберегающих окон (коэффициент теплопередачи U = 0,9 ВТ/(м 2 К).

    29. Основой энергосберегающих окон являются рамные конструкции из клеёной древесины. Со стороны помещения их древесина защищена лишь декоративно-отделочным слоем. Снаружи её прикрывают алюминиевые накладки.

    30-34.. Для утепления крыши (слой 400 мм) и наружных стен (слой 200 мм) применили задувную теплоизоляцию GUTEX Thermofibre на основе древесного волокна. Материал разрыхляли в специальной задувной машине (30) и по шлангу подавали к месту укладки (32, ЗА). Утеплитель задували поочерёдно в каждую полость, образованную каркасом, для чего в пароизоляции прорезали отверстия (31), которые после задувки заклеивали скотчем (33).

    35, 36. В расположенном в гараже техническом помещении компактно разместились корпус теплового насоса, два бойлера (один для системы ГВС, второй для системы отопления) (35) и комбинированный котёл (36), работающий на пеллетах и солярке.

    37, 38. Воздух, поступающий в систему вентиляции зимой, подогревается за счёт рекуперации тепла и тепла, которое вырабатывает тепловой насос (37). Далее он попадает в распределительное устройство (38), откуда по шлангам поступает в помещения.

    39, 40. Воздуховоды-шланги, подающие воздух в жилые помещения обоих этажей, проложены по перекрытию первого этажа, а также внутри каркасных перегородок (39). Таким же образом проведены инженерные коммуникации (40).

    41, 42. Внешние и внутренние стены, потолки первого этажа и скаты кровли изнутри дома обшиты доской, имитирующей клеёный брус наружных стен. 06 утеплении наружных стен свидетельствует только их толщина, что заметно лишь в проёмах.

    43, 44. Проложенные в пространстве под обшивкой электрические и слаботочные кабели выведены в помещения через прорезанные в древесине отверстия, диаметр которых соответствует размеру стандартных электроустановочных коробок.

    45. Внешне «пассивный» дом ничем не отличается от своих собратьев, возведённых из неутеплённого клеёного бруса. Его стены покрыты декоративно-защитным составом, сохранившим цвет натурального дерева.

    Строительство энергоэффективного дома – фото





    УКРУПНЁННЫЙ РАСЧЁТ СТОИМОСТИ ОБУСТРОЙСТВА КОРОБКИ ДОМА ОБЩЕЙ ПЛОЩАДЬЮ 240 М 2

    Наименование работ

    Кол-во

    Цена, руб.

    Стоимость, руб.

    ФУНДАМЕНТ, СТЕНЫ, ПЕРЕГОРОДКИ, ПЕРЕКРЫТИЯ, КРОВЛЯ

    Устройство утеплённого фундамента «Плита на Ленте»

    компл.

    1 150 000

    Заливка пенополистиролбетона 150 мм и стяжки 60 мм

    компл.

    210 000

    Утепление цоколя и отмостки фундамента

    компл.

    60 000

    Сборка комплекта дома на участке заказчика

    компл.

    1 500 000

    Утепление наружных стен, перегородок, крыши

    компл.

    425 000

    Устройство стропильной системы и кровельного настила

    компл.

    465 000

    Установка деревоалюминиевых окон

    62 м 2

    2016

    125 000

    ВСЕГО ПО РАЗДЕЛУ

    3 935 000

    Применяемые материалы

    Бетон, арматура

    компл.

    450 000

    Комплект клеёных деталей (балки, столбы, брус)

    86 м 3

    22 500

    1 933 000

    Комплект внутренних каркасных стен и перегородок

    компл.

    371 000

    Комплект крепёжных элементов и метизов

    компл.

    98 000

    Деревоалюминиевые окна INWIDO

    62 м 2

    22 581

    1 400 000

    Балки перекрытия, стропила, настил OSB -плиты

    компл.

    465 000

    Комплект для утепления и т. п. (паро-, ветроизоляция)

    компл.

    370 000

    Задувная теплоизоляция GUTEX Thermofibre

    90 упак.

    3750

    337 500

    Кровля Catepal Katrilli (вкл. веранду, крыльцо, эркер)

    267 м 2

    210 000

    ВСЕГО ПО РАЗДЕЛУ

    5 634 500

    ИТОГО

    9 569 500

    Какой дом строить? Поговорим о теплотехнике

    У КАЖДОГО, КТО РЕШАЕТ ВОЗВОДИТЬ ДОМ, ОДИН ИЗ ГЛАВНЫХ ВОПРОСОВ - КАКОЙ ОН ДОЛЖЕН БЫТЬ? МАЛЕНЬКИЙ ИЛИ БОЛЬШОЙ, В ОДИН ЭТАЖ ИЛИ В ДВА? И КОНЕЧНО, ИЗ ЧЕГО? СТРОИТЕЛЬНЫЙ РЫНОК В РОССИИ ПРЕДЛАГАЕТ САМЫЕ РАЗНЫЕ МАТЕРИАЛЫ. РАЗОБРАТЬСЯ В ЭТОМ ИЗОБИЛИИ И ОПРЕДЕЛИТЬСЯ С ВЫБОРОМ ПОМОЖЕТ СТРОИТЕЛЬНЫЙ ЭКСПЕРТ АЛЕКСЕЙ СУБОЧЕВ.

    Все люди разные: со своими пристрастиями, вкусом и, разумеется, возможностями. Кто-то хочет построить небольшую дачу, а кому-то нужен большой просторный дом для нескольких поколений. Но есть одно свойство жилища, которое объединяет всех: оно должно быть тёплым. Мало кому понравится мёрзнуть в собственном доме, по которому гуляют сквозняки, или, наоборот, когда в нём тепло и уютно, но расходы на отопление совсем не радуют.

    Чтобы ещё до этапа проектирования определиться с выбором материалов для строительства дома, который будет действительно тёплым, существует строительная наука под названием теплотехника.

    ЭНЕРГОЭФФЕКТИВНОСТЬ

    Десять лет назад вступил в действие Федеральный закон 384-ФЗ от 30-12-2009 «О безопасности зданий и сооружений», в котором сказано, что все строящиеся здания должны соответствовать требованиям энергоэффективности. Но если при возведении многоэтажных домов нормативы этого закона теперь выполняются в обязательном порядке, то в индивидуальном малоэтажном строительстве из-за отсутствия контролирующей инстанции – к сожалению, не всегда.

    Энергоэффективность – это ограничиваемый государством уровень теплопотерь здания. Если они ниже этого уровня, дом считается энергоэффективным, строить его можно, он будет достаточно тёплым. Для оценки теплопотерь в своде правил СП 50.13330.2012 «Тепловая защита зданий» введён параметр R0Tp -требуемое сопротивление теплопередаче ограждающей конструкции.

    СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ

    Величина R0tp для каждого региона различна и зависит от коэффициента ГСОП – градусо-суток отопительного периода, равного произведению разности температуры внутреннего воздуха и средней температуры наружного воздуха за отопительный период и продолжительности отопительного периода. Фактически это количество суток, в течение которых нужно отапливать дом, умноженное на разницу температур внутри и снаружи дома. В более холодном регионе ГСОП будет больше, в тёплом – меньше. К примеру, ГСОП для севера Московской области будет 4990, для Архангельска – 6375, а вот для Краснодара – всего 2538.

    Определяется R0tp по таблице № 3 из СП 50.13330.2012 «Тепловая защита зданий». Мы приведём здесь лишь часть таблицы для жилых зданий, остальное желающие легко найдут в Интернете (табл. 1).

    Для севера Московской области ГСОП равен 4990, a R 0 Tp будет при­мерно равен 3,15, для Архангельска при ГСОП – 6375, R 0 Tp ~ 3,63, а для Краснодара с ГСОП – 2538 значение R 0 , p «2,29.

    Таким образом, мы определили тре­буемое значение R, которое нам необ­ходимо получить от ограждающей кон­струкции – части дома, отделяющей нас от холода. Это не только стены, но и по­лы, перекрытие первого этажа, уте­пление кровли или чердака, оконные и дверные конструкции. Сопротивление теплопередаче каждого из этих элемен­тов рассчитывается.

    РАЗНЫЕ ЗНАЧЕНИЯ

    Необходимо помнить, что сопротив­ление теплопередаче пола первого этажа, кровли либо чердака должно быть больше, чем R 0 Tp стен, поскольку движение тёплого воздуха происходит снизу вверх.

    Тепловой защите этих мест нужно уделять максимальное внимание. Это отражено в нормативе, в таблице при ГСОП – 4000 для стен R 0 Tp – 2,8, а вот для покрытия сверху и снизу R 0 Tp уже от 3,7 до 4,2 в зависимости от кон­струкции фундамента.

    КАК ОЦЕНИТЬ R

    Как же нам узнать, стены из каких материалов и какой толщины под­ходят для строительства, то есть со­ответствуют нормативу? Сам расчёт сопротивления теплопередаче стен довольно сложен и включает много факторов, однако есть способ упростить себе жизнь. Можно посчитать так называемое термическое сопро­тивление ограждающей конструкции R – б/k, где б – толщина слоя матери­ала (м), а к – коэффициент теплопро­водности материала (Вт/(м-°С)). Зна­чение R показывает, сколько тепла пропускает материал указанной тол­щины. Посчитанное таким образом термическое сопротивление огражда­ющей конструкции зачастую получает­ся немного меньше, но числа обычно очень близкие.

    Есть ещё более простой путь – вос­пользоваться одним из многих тепло­технических калькуляторов, к при­меру российскими: теплорасчет.рф, smartcalc.ru, немецким ubakus.de и другими.

    Толщину мы можем задать, а коэф­фициент теплопроводности к мате­риала – справочное значение, оно обычно публикуется производителем в списке характеристик своего мате­риала на официальном сайте.

    Есть разные значения λ. Так, λ0- ко­эффициент теплопроводности в идеаль­но сухом состоянии, есть λ а – коэффи­циент теплопроводности для регионов нормальной влажности, а есть λ6 – ко­эффициент теплопроводности для реги­онов повышенной влажности.

    К примеру, возьмём выдержку из технических характеристик матери­алов одного из производителей газо­бетонных блоков (табл. 2).

    Там же, в СП 50.13330.2012 «Те­пловая защита зданий», есть пункты 4.3 и 4.4 с таблицей и Приложение В, по которым можно определить, како­вы условия эксплуатации зданий и ка­кое из значений нам нужно взять из справочника.

    Итак, для нашего расчёта по Крас­нодару мы можем взять из таблицы значение λ а, а вот для Москвы и Архангельска для расчёта нужно брать значение λ б. Если возьмём газобетон­ный блок толщиной 400 мм и плотно­стью D500, то получатся следующие числа (табл. 3).

    Термическое сопротивление стен для Краснодара явно превы­шает R 0 Tp в Москве оно чуть меньше норматива, а в Архангельске для газобетонной стены толщины 400 мм недостаточно.

    Приведу для примера расчёты по справочным значениям термического сопротивления наиболее часто встречающихся строительных конструкций (табл. 4).

    Энергоносители дорожают круглый год, и эпоха «дешёвого» газа, позво­лявшего отапливать даже дырявые дома, постепенно уходит в прошлое. Сейчас в некоторых районах Подмо­сковья за подключение газа просят сумму, большую, чем будет потрачено на альтернативные источники за весь срок эксплуатации дома. Потому я на­стоятельно рекомендую проектиро­вать и строить дом так, чтобы значе­ния термического сопротивления его ограждающих конструкций заметно превосходили те, что указаны в нор­мативной документации. За утепление дома вы платите один раз, а за отопле­ние нужно будет платить каждый месяц, и эти расходы будут только расти. Сле­дование нормам энергоэффективно­сти – лучшая инвестиция в будущее, она точно окупится.

    Как сделать деревянный контейнер для... Памятка для садовода – масса...

  • Чем осветить дом вместо лампочек...
  • Как приготовить листовую землю +...


  • Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Советы по строительству и ремонту