Советы по строительству и ремонту

Производство силикатных строительных материалов базируется на гидротермальном синтезе гидросиликатов кальция, который осу­ществляется в реакторе-автоклаве в среде насыщенного водяного пара давлением 0,8-1,3 МПа и температурой 175-200 °С. Для гидро­термального синтеза можно использовать при надлежащем обосно­вании иные параметры автоклавизации, применять обработку не только паром, но и паровоздушной или парогазовой смесью, водой.

Силикатные автоклавные материалы - это бесцементные мате­риалы и изделия (силикатные бетоны, силикатный кирпич, камни, блоки), приготовленные из сырьевой смеси, содержащей известь (гашеную или молотую негашеную), кварцевый песок и воду, кото­рые образуют в процессе автоклавной обработки гидросиликаты кальция:

Са(ОН)2 + Si02 + mH20 = Ca0Si02/iH20.

В условиях автоклавной обработки можно получить различные гидросиликаты кальция в зависимости от состава исходной смеси: тоберморит 5Ca0 6Si02 5H20, слабо закристаллизованные гидроси­ликаты: (0,8-1,5) Ca0 Si02 H20 - и (1,5-2) Ca0 Si02 H20. В высо­коизвестковых смесях синтезируется гиллебрандит 2Ca0Si02H20.

Автоклав представля­ет собой горизонтально расположенный стальной цилиндр с герметически закрывающимися с торцов крышками (рис. 9.3).

Диаметр автоклава - 2,6-3,6 м, длина - 21- 30 м. Автоклав снабжен манометром, показываю­щим давление пара, и Рис. 9.3. Загрузка в автоклав предохранительным кла-
паном, автоматически открывающимся при повышении давления выше предельного. В нижней части автоклава уложены рельсы, по которым передвигаются загруженные в автоклав вагонетки с изде­лиями. Автоклав оборудован устройствами для автоматического контроля и управления режимом автоклавной обработки. Для уменьшения теплопотерь автоклав покрыт слоем теплоизоляции.

После загрузки автоклав закрывают и в него постепенно впус­кают насыщенный пар. Высокая температура при наличии в бетоне воды в капельно-жидком состоянии создает благоприятные условия для химического взаимодействия между гидроксидом кальция и кремнеземом.

Прочность автоклавных материалов формируется в результате взаимодействия двух процессов: структурообразования, обусловлен­ного синтезом гидросиликатов кальция, и деструкции, обусловлен­ной внутренними напряжениями.

Для снижения внутренних напряжений автоклавную обработку проводят по определенному режиму, включающему постепенный подъем давления пара в течение 1,5-2 ч, изотермическую выдержку изделий в автоклаве при температуре 175-200 °С и давлении 0,8- 1,3 МПа в течение 4-8 ч и снижение давления пара в течение 2-4 ч. После автоклавной обработки продолжительностью 8-14 ч получают силикатные изделия.

Силикатные бетоны

Силикатные бетоны, как и цементные, могут быть тяжелыми (заполнитель - песок и щебень или песок и песчано-гравийная смесь), легкими (заполнители пористые - керамзит, вспученный перлит, аглопорит и др.) и ячеистыми.

В силикатном бетоне применяют известково-кремнеземистое вяжущее, в состав которого входят воздушная известь и тонкомоло­тый кварцевый песок (взамен песка применяют золу, молотый до­менный шлак). Прочность известково-кремнеземистого вяжущего зависит от активности извести, соотношения CaO/SiC>2, тонкости из­мельчения песка и параметров автоклавной обработки (температуры и давления насыщенного пара, длительности автоклавного тверде­ния). Оптимальным будет такое соотношение CaO/Si02 и такая тон­кость помола песка, при которых вся СаО будет связана в низкоос­новные гидросиликаты кальция (рис. 9.4).

Изготовление бетонных и железо бетонных изделий вклю­чает приготовление известково­кремнеземистого вяжущего, при­готовление и гомогенизацию си­ликатнобетонной смеси, формо­вание изделий, автоклавную об­работку. В процессе автоклави - зации между всеми компонента­ми бетона имеют место химиче­ские взаимодействия.

Заполнитель (в особенности кварцевый песок) участвует в синтезе новообразований, подвер­гаясь изменениям на глубину до 15 мкм.

Тяжелый силикатный бетон плотностью 1800-2500 кг/м3, с прочностью 15-80 МПа приме­няют для изготовления сборных бетонных и железобетонных конструкций, в том числе предваритель­но напряженных.

Силикатный кирпич

Силикатный кирпич изготовляется из жесткой смеси кварцевого песка (92-94%), извести (6-8%, считая на активную СаО) и воды (7- 9%) путем прессования под давлением (15-20 МПа) и последующего твердения в автоклаве.

Цвет силикатного кирпича светло-серый, но он может быть любо­го цвета путем введения в состав смеси щелочестойких пигментов. Выпускают кирпич двух видов: одинарный 250x120x65 мм и модуль­ный 250x120x88 мм. Модульный кирпич изготовляют с пустотами, чтобы масса одного кирпича не превышала 4,3 кг.

В зависимости от предела прочности при сжатии и изгибе сили­катный кирпич имеет марки: 100, 125, 150, 200 и 250.

Плотность силикатного кирпича (без пустот) - около 1800-
1900 кг/м3, т. е. он немного тяжелее обыкновенного глиняного кир­пича, теплопроводность - 0,70-0,75 Вт/(м °С), водопоглощение лицевого силикатного кирпича не превышает 14%, а рядового - 16%. Марки по морозостойкости для лицевого кирпича: 25, 35, 50; для рядового - 15.

Силикатный кирпич, как и глиняный, применяют для несущих стен зданий. Не рекомендуется его применять для цоколей зданий из-за недостаточной водостойкости. Для кладки труб и печей сили­катный кирпич не используют, так как при высокой температуре де­гидратируется Са(ОН)2, разлагаются СаС03 и гидросиликаты каль­ция, а зерна кварцевого песка при 600 °С расширяются и вызывают растрескивание кирпича.

На производство силикатного кирпича расходуется меньше теп­ла, поскольку не требуются сушка и высокотемпературный обжиг, поэтому он на 30-40% дешевле глиняного кирпича.

Схема производства силикатного кирпича показана на рис. 9.5.

Комовую известь-кипелку, поступающую из известеобжига­тельной печи, сортируют, чтобы удалить недожог и пережог, затем дробят и размалывают в тонкий порошок. При этом воздушным се­паратором отделяются наиболее тонкие частицы. Повышение тонко­сти помола извести также сокращает ее расход.

Гасить известь в смеси с песком можно в силосах в течение 8- 9 ч (первый способ) или, что гораздо быстрее и интенсивнее, в гасильных барабанах (второй способ). Последний представляет собой металлический цилиндр, по концам имеющий форму усе­ченных конусов, который вращается вокруг горизонтальной оси. При помощи дозирующего аппарата песок дозируют по объему, а известь - по весу, а затем засыпают через герметически закры­вающийся люк в гасильный барабан. После загрузки барабан вра­щают, впускают пар и гасят известь под давлением 0,3-0,5 МПа. Перед прессованием известково-песчаную смесь перемешивают в лопастной мешалке или на бегунах и дополнительно увлажняют (до 7%).

Прессуют кирпич на прессах под давлением до 150-200 кг/см2. Применяемые на заводах прессы имеют периодически вращающийся стол с устроенными в нем формами. Прессование производится снизу

вверх при помощи рычажного механизма. Спрессованный кирпич - сырец получает высокую плотность, что способствует более полно­му прохождению реакции между известью и кварцевым песком. Производительность различных типов прессов, зависящая от их кон­струкции, колеблется в пределах 2200-3000 кирпичей в 1 ч.

Отформованные кирпичи снимают со стола пресса, осторожно укладывают на вагонетки и отправляют в автоклавы для твердения.

Прочность силикатного кирпича продолжает повышаться и по­сле запаривания его в автоклаве. Это объясняется тем, что часть из­вести, не вступившей в химическое взаимодействие с кремнеземом, реагирует с углекислотой воздуха, т. е. происходит карбонизация: Са(ОН)2 + С02 = СаС03+ Н20.

Прочность, водостойкость и морозостойкость силикатного кир­пича увеличиваются также при его высыхании.

Известково-шлаковый и известково-зольный кирпич

Известково-шлаковый кирпич изготовляют из смеси извести и гранулированного доменного шлака. Извести берут 3-12% по объ­ему, шлака - 88-97%.

При замене шлака золой получается известково-зольный кир­пич. Состав смеси: 20-25% извести и 80-75% золы. Так же как и шлак, зола является дешевым сырьем, образующимся в больших ко­личествах после сжигания топлива (каменного угля, бурого угля и др.) в котельных ТЭЦ, ГРЭС и др.

В процессе сгорания пылевидного топлива часть очаговых ос­татков оседает в топке (зола-шлак), а самые мелкие частицы золы уносятся в дымоходы, где задерживаются золоуловителями, а затем их транспортируют за пределы котельной - в золоотвалы. Наиболее тонкодисперсные золы называют золами-уносами.

При смешивании с водой золы не твердеют, однако при добав­ках извести или портландцемента они активизируются, а запарива­ние смеси в автоклавах дает возможность получать из них изделия достаточной прочности.

При сжигании некоторых горючих сланцев (например, средне волжских) образуются золы, содержащие окиси кальция 15% и более, которые имеют способность твердеть без добавок извести. Кирпич из этих зол называют сланце-золъным.

Использование шлаков и зол очень выгодно, так как при этом снижается стоимость строительных материалов.

Известково-шлаковый и известково-зольный кирпичи формуют на тех же прессах, которые применяют при производстве силикатно­го кирпича, и запаривают в автоклавах.

Плотность шлакового и зольного кирпичей - 1400-1600 кг/м3, теплопроводность - 0,5-0,6 Вт/(м °С). По пределу прочности при сжатии шлаковый и зольный кирпичи разделяют на три марки: 75, 50 и 25. Морозостойкость известково-шлакового кирпича такая же, как и силикатного, а известково-зольного - ниже.

Известково-шлаковый и известково-зольный кирпичи применя­ют для возведения стен зданий высотой не более трех этажей и для кладки верхних этажей многоэтажных зданий.

Изделия из пеносиликата и других ячеистых материалов

Пеносиликат - это искусственный каменный материал ячеи­стой структуры, который получается в результате затвердевания пластичной известково-песчаной смеси, смешанной с технической пеной.

Материал, полученный смешиванием того же раствора с газооб - разователем (алюминиевой пудрой, пергидролем и др.), называют газосиликатом.

Для производства пеносиликата рекомендуется применять моло­тую известь-кипелку, содержащую активный СаО не менее 70%. Чем выше активность извести и тоньше помол, тем меньше ее требуется для приготовления пеносиликата. Обычно извести берут 15-20% от веса сухой смеси. Кроме кварцевого песка, в качестве заполнителей можно использовать доменный гранулированный шлак, золу элек­тростанций, маршалит, трепел, диатомит и другие заполнители, со­держащие большое количество кремнезема.

В процессе производства пеносиликата известь и заполнитель подвергают совместному или раздельному помолу. При раздельном помоле компонентов известь и заполнитель измельчают в трубных, шаровых мельницах, а при совместном помоле - в дезинтеграторах. Песок сначала измельчают в них с гашеной известью, которой берут 25-30% от общего количества вводимой извести, а остальную часть извести добавляют в виде молотой извести-кипелки.

Дальнейший этап производства пеносиликатных изделий заклю­чается в приготовлении ячеистой смеси. Ячеистую смесь приготов­ляют путем смешивания известково-песчаного раствора с устойчи­вой пеной в пенобетономешалках.

Готовую ячеистую смесь выливают из смесительного барабана пенобетономешалки в бункер, а затем разливают в формы, соответ­ствующие профилю и размерам будущего изделия. После 6-8 часо­вой выдержки (частичного отвердения) формы с полузатвердевшей смесью транспортируют в автоклавы для запаривания.

Пеносиликатные изделия изготовляют плотностью от 300 до 1200 кг/м3 и прочностью в пределах 0,4-20 МПа.

Из теплоизоляционного пеносиликата изготовляют термовкла­дыши, которые используют для утепления стен; плиты, скорлупы и короба - для ограждения теплопроводов и другие теплоизоляцион­ные изделия. Для кладки несущих стен одно-, двухэтажных зданий применяют мелкие офактуренные неармированные блоки плотно­стью 600-700 кг/м3.

Для защиты блоков от атмосферных воздействий в процессе экс­плуатации наружная поверхность изделий покрывается облицовоч­ным слоем из цементно-песчаного раствора толщиной 2-3 см, кото­рый укладывается на дно формы перед заливкой ячеистой смеси.

Конструктивно-теплоизоляционный пено - и газосиликат приме­няют теперь также для изготовления крупноразмерных изделий для наружных и внутренних стен, покрытий промышленных сооруже­ний, междуэтажных и чердачных перекрытий жилых зданий, перего­родок и др.

Для покрытий промышленных зданий изготовляют армопеноси - ликатные и армогазосиликатные прямоугольные плиты.

Армопеносиликатные плиты по сравнению с обычными железо­бетонными не требуется теплоизолировать и в то же время они дос­таточно прочны и долговечны. Укладывают их по железобетонным или металлическим прогонам, а сверху покрывают гидроизоляцион­ными рулонными материалами.

Плотность пеносиликата 900-1100 кг/м3, предел прочности его при сжатии 6-10 МПа (гл. X, § 8).

В наибольшем количестве в земной коре (литосфере) содержится свободный кремниевый ангидрид или кремнезем Si0 2 . В состав большинства минералов он входит в виде силикатов -> химических соединений с основными окислами. Свободный природный кристаллический кремнезем встречается в виде кварца - одного из наиболее распространенных в земной коре минералов. Его кристаллы имеют форму шестигранных призм с шестигранными же пирамидами на концах (основаниях). Кварц обычно непрозрачен, чаще он белого, молочного цвета. Спайность у кварца отсутствует, излом его раковистый, он имеет жирный блеск; с щелочами при обычной температуре не соединяется и под действием кислот (кроме плавиковой) не разрушается. Удельный вес кварца 2,65, твердость 7 по шкале твердости. Кварц имеет высокую прочность при сжатии (около 20 000 кГ/см 2) и хорошо сопротивляется действию истирания. При нагревании до температуры 575° С кварц из β-модификации переходит в α-модификацию (высокотемпературную), скачкообразно увеличиваясь в объеме примерно на 1,5%. При температуре 870° С он начинает переходить в тридимит (удельный вес 2,26), значительно увеличиваясь в объеме (минерал тридимит кристаллизуется в виде тонких шестигранных пластинок). Эти изменения объема кварца при высоких температурах необходимо учитывать в производстве огнеупорных динасовых изделий. При температуре 1710° С кварц переходит в жидкое состояние. При быстром остывании расплавленной массы (расплава) образуется кварцевое стекло - аморфный кремнезем с удельным весом 2,3.

В природе встречается минерал опал аморфной структуры, представляющий собой гидрат-кремнезема (Si0 2 *nH 2 0). Аморфный кремнезем активен, может соединяться с известью при нормальной температуре, тогда как кристаллический кремнезем (кварц) приобретает эту способность только под действием пара большого давления (в автоклаве) или при сплавлении.

ГРУППА АЛЮМОСИЛИКАТОВ

Второе место после кремнезема занимает в земной коре глинозем А1 2 О 3 . Свободный глинозем в природе встречается в виде минералов корунда и других глиноземистых минералов.

Корунд - один из наиболее твердых минералов. Его используют для производства высокоогнеупорных материалов, он является ценным абразивом.

Другой глиноземистый материал - диаспор - представляет моногидрат глинозема А1203. Н20 и содержит 85% А1203. Диаспор входит в состав бокситов - тонкодисперсных горных пород часто красного или фиолетового цвета, богатых глиноземом (от 40 до 80%) и используемых как сырье для производства глиноземистого цемента.

Глинозем обычно находится в виде химических соединений с кремнеземом и другими окислами, называемых алюмосиликатами. Наиболее распространенными в земной коре алюмосиликатами являются полевые шпаты, которые составляют по весу более половины всей массы литосферы. К этой же группе минералов относятся слюды и каолиниты.

ГРУППА ЖЕЛЕЗИСТО-МАГНЕЗИАЛЬНЫХ СИЛИКАТОВ

Минералы, входящие в эту группу, имеют темную окраску, поэтому,nих часто называют темноокрашенными минералами. Удельный вес их больше, чем других силикатов, твердость находится в пределах 5,5- 7,5; они обладают значительной вязкостью. При большом содержании их в горных породах они придают последним темный цвет и большую вязкость, т. е. повышенную сопротивляемость удару. Наиболее распространенными породообразующими минералами железисто-магнезиальной группы являются пироксены, амфиболы и оливин.

ГРУППА КАРБОНАТОВ

В осадочных горных породах наиболее часто встречаются породообразующие карбонатные минералы (карбонаты), важнейшие из них - кальцит, магнезит и доломит.

Кальцит, или кристаллический известковый шпат СаС0 3 один из самых распространенных минералов земной коры. Он легко раскалывается по плоскостям спайности по трем направлениям, имеет удельный вес 2,7 и твердость 3. Кальцит слабо растворим в чистой воде (0,03 г в 1 л), но растворимость его резко возрастает при содержании в воде агрессивной двуокиси углерода СО 2 , так как образуется кислый углекислый кальций Са(НС0 3)2, растворимость которого почти в 100 раз больше, чем кальцита.

Магнезит MgC0 3 встречается большей частью в виде землистых или плотных агрегатов, обладающих скрыто-кристаллическим строением. Он тяжелее и тверже кальцита.

Доломит CaC0 3 -MgC0 3 по физическим свойствам близок к кальциту, но более тверд и прочен и еще меньше растворим в воде.

ГРУППА СУЛЬФАТОВ

Сульфатные минералы (сульфаты), так же как и карбонаты, часто встречаются в осадочных горных породах; важнейшие из них - гипс и ангидрит.

Гипс CaS0 4 *2H 2 0 типичный минерал осадочных пород. Строение его кристаллическое, иногда мелкозернистое, кристаллы пластинчатые, столбчатые, игольчатые и волокнистые. Встречается гипс преимущественно в виде сплошных зернистых, волокнистых и плотных пород вместе с глинами, сланцами, каменной солью и ангидритом. Гипс имеет белый цвет, иногда бывает прозрачен или окрашен примесями в различные цвета. Удельный вес его 2,3, твердость 2.

В воде гипс растворяется сравнительно легко при температуре 32-41° С, растворимость его в 75 раз больше, чем кальцита.

Ангидрит CaS0 4 имеет удельный вес 2,8-3, твердость 3-3,5; по внешнему виду похож на гипс. Залегает пластами и прожилками вместе с гипсом и каменной солью. Под действием воды ангидрит постепенно переходит в гипс, при этом объем его увеличивается.

ПОРОДЫ ХИМИЧЕСКОГО ПРОИСХОЖДЕНИЯ

Магнезит MgC03 используют дли получения огнеупорных материллов и магнезиального нижущего - каустического магнезите.

Доломит состоит в основном из минерала того же названия СаС03 MgC03. По свойствам доломиты близки к плотным известнякам, а иногда обладают и более высокими качествами. Применяют их в качестве строительного камня и щебня для бетона, а также для получения огнеупорных материалов и вяжущего вещества (каустического доломита). Доломиты широко распространены.

Гипс CaS0 4 *2H 2 Q, состоящий из минерала того же названия, используют главным образом для изготовления гипсовых вяжущих веществ и в качестве добавки при производстве портландцемента.

Ангидрит CaS0 4 , состоящий из минерала того же названия, применяют для получения вяжущих, а также для изготовления плит для внутренней облицовки. Внешне ангидрит заметно не отличается от гипса и залегает обычно вместе с ним.

Известковые туфы образовались в результате выпадения СаС0 3 из холодных и горячих подземных углекислых вод. Очень пористые известковые туфы используют как материал для декоративных построек (гроты и др.) и как сырье для приготовления изверти, а плотные с мелкими равномерно расположенными порами и пределом прочности при сжатии до 800 кГ/см 2 - для наружной облицовки зданий .

БЕТОНЫ. ОСНОВНЫЕ СВЕДЕНИЯ О БЕТОНЕ

Бетоном называется искусственный камень, получаемый в результате твердения рационально подобранной смеси, состоящей из вяжущего вещества, воды и заполнителей (песка и щебня или гравия). Смесь этих материалов до затвердевания называется бетонной смесью.

Зерна песка и щебня составляют каменный остов в бетоне. Цементное тесто, образующееся после затворения бетонной смеси водой, обволакивает зерна песка и щебня, заполняет промежутки между ними и играет вначале роль смазки заполнителей, придающей подвижность (текучесть) бетонной смеси, а впоследствии, затвердевая, связывает зерна заполнителей, образуя искусственный камень - бетон. Бетон в сочетании со стальной арматурой называется железобетоном .

КЛАССИФИКАЦИЯ БЕТОНОВ

Классифицируют бетоны по следующим главнейшим признакам: объемному весу, виду вяжущего вещества, прочности, морозостойкости и назначению.

Основной считается классификация по объемному весу. Бетон делят на особотяжелый объемным весом более 2500 к г/м 3 , тяжелый - объемным весом от 1800 до 2500 кг/м 3 включительно, легкий - объемным весом от 500 до 1800 кг/м 3 включительно, особолегкий - объемным весом менее 500 кг/м 3 .

В зависимости от наибольшей крупности применяемых заполнителей различают бетоны мелкозернистые с заполнителем размером до 10 мм и крупнозернистые с заполнителем наибольшей крупности 10-150 мм.

Важнейшими показателями качества бетона являются его прочность и долговечность. По показателям прочности при сжатии бетоны подразделяются на марки R в кГ/см 2 . Тяжелые бетоны на цементах и обычных плотных заполнителях имеют марки 100-600, особотяжелые бетоны 100-200, легкие бетоны на пористых заполнителях 25-300, ячеистые бетоны 25-200, плотные силикатные бетоны 100-400 и жаростойкие бетоны 100-400.

Долговечность бетонов оценивается степенью морозостойкости. По этому показателю бетоны разделяют на марки морозостойкости Мрз: для тяжелых бетонов Мрз 50-300 и для легких бетонов Мрз 10-200. По виду вяжущего вещества различают бетоны: цементные, изготовленные на гидравлических вяжущих веществах- портландцементах и его разновидностях;

силикатные - на известковых вяжущих в сочетании с силикатными или алюминатными компонентами;

гипсовые - с применением гипсоангидритовых вяжущих; бетоны на органических вяжущих материалах.

Тяжелый бетон изготовляют на цементе и обычных плотных заполнителях, а легкий - на цементе с применением естественных или искусственных пористых заполнителей. Разновидностью легкого бетона является ячеистый бетон, представляющий собой отвердевшую смесь вяжущего вещества, воды, тонкодисперсного кремнеземистого компонента и порообразователя. Он отличается высокой пористостью (до 80-90%) при равномерно распределенных мелких порах. Силикатные бетоны получают из смеси извести и кварцевого песка с последующим твердением сформованных изделий в автоклаве при давлении 9-16 атм (изб.) и температуре 174,5-200° С.

По назначению бетон бывает следующих видов:

обычный - для бетонных и железобетонных несущих конструкций зданий и сооружений (колонны, балки, плиты);

гидротехнический - для плотин, шлюзов, облицовки каналов и др.;

для зданий и легких перекрытий;

для полов и дорожных покрытий и оснований;

специального назначения: кислотоупорный, жароупорный, особотяжелый для биологической защиты.

Последние изготовляют на цементе со специальными видами заполнителей высокого объемного веса.

Цемент

Для приготовления тяжелых бетонов применяют портландцемент обычный, пластифицированный и гидрофобный, портландцемент с гидравлическими добавками, шлакопортландцемент и др. Характеристика этих цементов и требования, предъявляемые к ним, изложены в четвертой главе.

Вода для затворения

Для затворения бетонных смесей и поливки бетона применяется вода, не содержащая вредных примесей, препятствующих нормальному твердению бетона, - кислот, сульфатов, жиров, растительных масел, сахара и т. п. Нельзя применять воды болотные и сточные, а также воды, загрязненные вредными примесями, имеющие водородный показатель pH менее 4 и содержащие сульфаты (в расчете на SO3) более 0,27%. Морскую и другие воды, имеющие минеральные соли, можно использовать только, если общее количество солей в них не превышает 2%. Пригодность воды для бетона устанавливается химическим анализом и сравнительными испытаниями прочности бетонных образцов, изготовленных на данной и на чистой питьевой воде и испытанных в возрасте 28 сут. при хранении в нормальных условиях. Вода считается пригодной, если приготовленные на ней образцы имеют прочность, не меньшую, чем образцы на чистой питьевой воде.

Песок

Песком называется рыхлая смесь зерен крупностью от 0,14 до 5 мм, образовавшаяся в результате естественного разрушения массивных горных пород или их дробления (природные пески). Кроме природных песков применяют искусственные, получаемые при дроблении или грануляции металлургических и топливных шлаков или специально приготовленных материалов - керамзита, аглопорита и др. Можно использовать пески фракционированные и нефракционированные.

Крупный заполнитель

В качестве крупного заполнителя для тяжелого бетона применяется гравий или щебень из горных пород, реже шлаковый и кирпичный щебень.

Гравием называется скопление зерен размером 5-70 (150) мм, образовавшихся в результате естественного разрушения горных пород. Зерно гравия имеет окатанную форму и гладкую поверхность. Для -бетона наиболее выгодны зерна малоокатаные щебневидной формы, хуже яйцевидные (окатанные), еще хуже пластинчатые и игловатые зерна, понижающие прочность бетона. Содержание пластинчатых и игловатых зерен в гравии допускается не более 15%, а зерен слабых (пористых) пород - не более 10%. По крупности зерен гравий разделяется на следующие фракции: 5-10, 10-20, 20-40 и 40-70 мм.

Часто гравий залегает вместе с песком. При содержании в гравии 25-40% песка материал называют песчано-гравийной смесью.

Щебень получают путем дробления массивных горных пород, гравия, валунов или искусственных камней на куски размером 5-70 мм. Для приготовления бетона обычно используется щебень, полученный дроблением плотных горных пород, щебень из гравия и щебень из доменных и мартеновских шлаков.

ОСНОВНЫЕ СВОЙСТВА БЕТОННОЙ СМЕСИ И БЕТОНА

Тяжелый бетон чаще всего изготовляют на портландцементе, кварцевом песке и гравии или щебне из плотных горных пород. Бетон должен приобрести проектную прочность к определенному сроку и обладать другими качествами, соответствующими назначению изготовляемой конструкции (водостойкостью, морозостойкостью, плотностью и т. д.). Кроме того, требуется определенная степень подвижности бетонной смеси, которая соответствовала бы принятым способам ее укладки.

Каждый из этих компонентов влияет на вязкопластичные свойства смеси. Так, если увеличить содержание заполнителей, смесь становится более жесткой; если цементного теста - более пластичной и текучей. Существенно влияет на свойства бетонной смеси и вязкость цементного теста. Чем больше в цементном тесте воды, тем пластичнее получается тесто и соответственно пластичнее бетонная смесь.

Одно из основных свойств бетонной смеси - тиксотропия - способность разжижаться при периодически повторяющихся механических воздействиях (например, вибрации) и вновь загустевать при прекращении этого воздействия. Механизм тиксотропного разжижения заключается в том, что при вибрировании силы внутреннего трения и сцепления между частицами уменьшаются и бетонная смесь становится текучей. Это свойство широко используют при укладке и уплотнении бетонной смеси.

Рисунок 9.1. Определение подвижности пластичных бетонных смесей по осадке конуса(ОК):

1-опоры;2-ручки;3-форма-конус;4-бетонная смесь.

Удобоукладываемость - обобщенная техническая характеристика вязкопластичных свойств бетонной смеси. Под удобоукладываемостью понимают способность бетонной смеси под действием определенных приемов и механизмов легко укладываться в форму и уплотняться, не расслаиваясь. Удобоукладываемость смесей в зависимости от их консистенции оценивают по подвижности или жесткости.

Подвижность служит характеристикой удобоукладываемости пластичных смесей, способных деформироваться под действием собственного веса. Подвижность характеризуется осадкой стандартного конуса, отформованного из испытуемой бетонной смеси. Для этого металлическую форму-конус, установленную на горизонтальной поверхности, заполняют бетонной смесью в три слоя, уплотняя каждый слой штыкованием. Избыток смеси срезают, форму-конус снимают и измеряют осадку конуса из бетонной смеси - ОК (рис. 9.1), значение которой (в сантиметрах) служит показателем подвижности.

Жесткость - характеристика удобоукладываемости бетонных смесей, у которых не наблюдается осадки конуса (ОК=0). Ее определяют по времени вибрации (в секундах), необходимому для выравнивания и уплотнения предварительно отформованного конуса из бетонной смеси с помощью специального прибора (рис. 12.3), который представляет собой металлический цилиндр диаметром 240 мм и высотой 200 мм со штативом и штангой 6 и металлическим диском 4 с шестью отверстиями. Прибор закрепляют на стандартной виброплощадке 1, в него вставляют форму-конус 3. Конус заполняют бетонной смесью в три слоя, штыкуя каждый слой 25 раз. Затем форму-конус снимают и, поворачивая штатив, опускают металлический диск 4 на поверхность бетонной смеси. После этого включают вибратор. Время, в течение которого смесь распределится в цилиндрической форме 2 равномерно и хотя бы через два отверстия диска начнет выделяться цементное молоко, принимается за показатель жесткости смеси (Ж).

Рис. 9.2. Схема определения жесткости (Ж) бетонной смеси:

а - прибор в начальном положении; б - то же, в момент окончания испытаний; 1 - вибро-площадка; 2 - цилиндрическая форма; 3- бетонная смесь; 4 - диск с отверстиями; 5- втулка; б -штанга; 7 - бетонная смесь после вибрирования

В зависимости от удобоукладываемости различают жесткие и подвижные бетонные смеси (табл. 9.1).

Жесткие бетонные смеси содержат небольшое количество воды и соответственно пониженное количество цемента в сравнении с подвижными смесями у бетонов равной прочности. Жесткие смеси требуют интенсивного механического уплотнения: длительного вибрирования, вибротрамбования и т. и. Используют такие смеси при изготовлении сборных железобетонных изделий в заводских условиях (например, на домостроительных комбинатах); в построечных условиях жесткие смеси применяют редко.

Таблица 9.1. Классификация бетонных смесей по удобоукладываемости

Подвижные смеси отличаются большим расходом воды и соответственно цемента. Эти смеси представляют собой густую массу, которая легко разжижается при вибрировании. Смеси марок ПЗ и П4 текучие; под действием силы тяжести они заполняют форму, не требуя значительных механических усилий. Подвижные смеси можно транспортировать бетононасосами по трубопроводам.

Связность - способность бетонной смеси сохранять однородную структуру, т. е. не расслаиваться в процессе транспортирования, укладки и уплотнения. При механических воздействиях на бетонную смесь в результате ее тиксотропного разжижения часть воды как наиболее легкого компонента отжимается вверх. Крупный заполнитель, плотность которого обычно больше плотности растворной части (смеси цемента, песка и воды), опускается вниз (Легкие заполнители (керамзит и др.), наоборот, могут всплывать. Все это делает бетон неоднородным, снижая его прочностные показатели и морозостойкость.

ПРОЧНОСТЬ, МАРКА И КЛАСС БЕТОНА

Тяжелый бетон - основной конструкционный строительный материал, поэтому оценке его прочностных свойств уделяется большое внимание. Прочностные характеристики бетона определяются строго в соответствии с требованиями стандартов. Используется несколько показателей, характеризующих прочность бетона. Неоднородность бетона как материала учитывается в основной прочностной характеристике - классе бетона.

Прочность . Как и у всех каменных материалов, предел прочности бетона при сжатии значительно (в 10...15 раз) выше, чем при растяжении и изгибе. Поэтому в строительных конструкциях бетон, как правило, работает на сжатие. Когда говорят о прочности бетона, подразумевают его прочность на сжатие.

Бетон на портландцементе набирает прочность постепенно. При нормальной температуре и постоянном сохранении влажности рост прочности бетона продолжается длительное время, но скорость набора прочности со временем затухает.

Прочность бетона принято оценивать по среднему арифметическому значению результатов испытания образцов данного бетона через 28 сут нормального твердения. Для этого используют образцы-кубы размером 150 х 150 х 150 мм, изготовленные из рабочей бетонной смеси и твердевшие при (20 ± 2)° С на воздухе при относительной влажности 95 % (или в иных условиях, обеспечивающих сохранение влаги в бетоне). Методы определения прочности бетона регламентированы стандартом.

Марка бетона. По среднему арифметическому значению прочности бетона устанавливают его марку - округленное значение прочности (причем округление идет всегда в нижнюю сторону). Для тяжелого бетона установлены следующие марки по прочности на сжатие: 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700 и 800 кгс/см2. При обозначении марки используют индекс «М»; так, например, марка бетона М350 означает, что его средняя прочность не менее 35 МПа (но не более 40).

Отличительная особенность бетона - значительная неоднородность его свойств .

Это объясняется изменчивостью в качестве сырья (песка, крупного заполнителя и даже цемента), нарушением режима приготовления бетонной смеси, ее транспортировки, укладки

(степени уплотнения) и условии твердения. Все это приводит к разбросу прочности бетона одной и той же марки. Чем выше культура производства (лучше качество подготовки материалов, приготовления и укладки бетона и т. п.), тем меньше будут возможные колебания прочности бетона. Для строителя важно получить бетон не только с заданной средней прочностью, но и с минимальными отклонениями (особенно в низшую сторону) от этой прочности. Показателем, который учитывает возможные колебания качества бетона, является класс бетона.

Класс бетона - это численная характеристика какого-либо его свойства (в том числе и прочности), принимаемая с гарантированной обеспеченностью (обычно 0,95). Это значит, что установленное классом свойство, например прочность бетона, достигается не менее чем в 95 случаях из 100.

Понятие «класс бетона» позволяет назначать прочность бетона с учетом ее фактической или возможной вариации. Чем меньше изменчивость прочности, тем выше класс бетона при одной и той же средней прочности.

ГОСТ 26633-85 устанавливает следующие классы тяжелого бетона по прочности на сжатие (МПа): 3,5; 5; 7,5; 10; 12,5; 15; 20; 25; 30; 32,5; 40; 45; 50; 55 и 60. Класс по прочности на сжатие обозначают латинской буквой В, справа от которой приписывают его гарантированную прочность в МПа. Так, у бетона класса В15 предел прочности при сжатии не ниже 15 МПа с гарантированной обеспеченностью 0,95.

Соотношение между классами и марками бетона неоднозначно и зависит от однородности бетона, оцениваемой с помощью коэффициента вариации. Чем меньше коэффициент вариации, тем однороднее бетон. Класс бетона одной и той же марки заметно увеличивается при снижении коэффициента вариации. Так, при марке бетона M300 и коэффициенте вариации 18 % класс бетона будет В15, а при коэффициенте вариации 5 % - В20, т. е. на целую ступень выше. Это показывает, как важно тщательное выполнение всех технологических операций и повышение культуры производства. Только в этом случае достигается высокая однородность бетона и более высокий класс его прочности при неизменном расходе цемента.

Строительными нормами принят нормативный коэффициент вариации прочности бетона, равный 13,5 % и характеризующий технологию бетонных работ как удовлетворительную.

Соотношение между классами бетона по прочности на сжатие и его марками при нормативном коэффициенте вариации, равном 13,5 %, приведено в табл. 9.2.

Таблица 9:2. Соотношение между марками и классами тяжелого бетона по прочности при коэффициенте вариации 13,5 %

Класс бетона Ближайшая марка бетона Класс бетона Средняя прочность данного класса, кгс/см2 Ближайшая марка бетона
В3,5 М50 ВЗО М400
В5 М75 В35 М450
В7,5 . М100 В40 М550
В 10 М150 В45 М600
В12,5 М150 В5О М600
В15 М200 В55 М700
В20 М250 В60 М800
В25 М350

ОСНОВНЫЕ СВОЙСТВА ТЯЖЕЛОГО БЕТОНА

К основным свойствам тяжелого бетона, кроме прочности, относят: пористость, деформативность (модуль упругости, ползучесть, усадку), водопроницаемость, морозостойкость, теплофизические свойства и др.

Деформативность бетона. Бетон под нагрузкой ведет себя не как идеально упругое тело (например, стекло), а как упруго-вязко-пластичное тело (рис. 9.3). При небольших напряжениях (не более 0,2 от предела прочности) бетон деформируется, как упругий материал. При этом его начальный модуль упругости зависит от пористости и прочности и составляет для тяжелых бетонов (2,2...3,5) 10 4 МПа (у сильнопористых ячеистых бетонов модуль упругости около 10 4 МПа).

Рис.9.3. Кривая деформирования Рис. 9.4. Развитие деформаций бетона

в координатах σ - ε во времени: ε нач -начальная деформация бетона

в момент нагружения; ε п - деф. ползучести

При больших напряжениях проявляется пластическая (остаточная) деформация, развивающаяся в результате роста микротрещин и пластических деформаций гелевой составляющей цементного камня.

Ползучесть - склонность бетона к росту пластических деформаций при длительном действии статической нагрузки. Ползучесть бетона также связана с пластическими свойствами цементного геля и микро- трещинообразованием. Она носит затухающий во времени характер (рис.9.4). Абсолютные значения ползучести зависят от многих факторов. Особенно активно ползучесть развивается, если бетон нагружается в раннем возрасте. Ползучесть можно оценивать двояко: как положительный процесс, помогающий снижать напряжения, возникающие от термических и усадочных процессов, и как отрицательное явление, например, снижающее эффект от предварительного напряжения арматуры.

Усадка - процесс сокращения размеров бетонных элементов при их нахождении в воздушно-сухих условиях. Основная причина усадки - сжатие гелевой составляющей при потере воды.

Усадка бетона тем выше, чем больше объем цементного теста в бетоне (рис. 9.5). В среднем усадка тяжелого бетона составляет 0,3...0,4 мм/м.

Рис. 9.5. Кривые усадки при твердении на воздухе:1-цементногокамня,2-раствора,3-бетона

Вследствие усадки бетона в бетонных и железобетонных конструкциях могут возникнуть большие усадочные напряжения, поэтому элементы большой протяженности разрезают усадочными швами во избежание появления трещин. При усадке бетона 0,3 мм/м в конструкции длиной 30 м общая усадка составит 10 мм. Усадочные трещины в бетоне на контакте с заполнителем и в самом цементном камне могут снизить морозостойкость и послужить очагами коррозии бетона.

Пористость . Как это ни покажется странным, такой плотный на вид материал имеет заметную пористость. Причина ее возникновения, как, это уже не раз говорилось, кроется в избыточном количестве воды затворения. Бетонная смесь после правильной укладки представляет собой плотное тело. При твердении часть воды химически связывается минералами цементного клинкера (для портландцемента около 0,2 от массы цемента), а оставшаяся часть постепенно испаряется, оставляя после себя поры. В этом случае пористость бетона можно определить по формуле

П = [(В - ώ Ц)/1000] 100,

где В и Ц - расходы воды и цемента на 1 м 3 , ώ-количество химически связанной воды в долях от массы цемента.

Так, в возрасте 28 сут цемент связывает 17 % воды от своей массы; расход воды в этом бетоне - 180 кг, а цемента - 320 кг. Тогда пористость этого бетона будет:

П = [(180 - 0,17- 320)/1000] 100 = 12,6%.

Это общая пористость, включающая микропоры геля и капиллярные поры (объем вовлеченного воздуха мы не рассматриваем). С точки зрения влияния на проницаемость и морозостойкость бетона важно количество капиллярных пор. Относительный объем таких пор можно вычислить по формуле, %:

П к = [(В -2 ώ Ц)/1000]100

Для нашего случая количество капиллярных пор будет - 7,3 %.

Водопоглощение и проницаемость . Благодаря капиллярно-пористому строению бетон может поглощать влагу как при контакте с ней, так и непосредственно из воздуха. Гигроскопическое влагопоглощение у тяжелого бетона незначительно, но у легких бетонов (а в особенности у ячеистых) может достигать соответственно 7...8 и 20...25 %. "

Водопоглощение характеризует способность бетона впитывать влагу в капельно-жидком состоянии; оно зависит, главным образом, от характера пор. Водопоглощение тем больше, чем больше в бетоне капиллярных сообщающихся между собой пор. Максимальное водопоглощение тяжелых бетонов на плотных заполнителях достигает 4...8 % по массе (10...20 % по объему). У легких и ячеистых бетонов этот показатель значительно выше.

Большое водопоглощение отрицательно сказывается на морозостойкости бетона. Для уменьшения водопоглощения прибегают к гидрофобизации бетона, а также к устройству паро- и гидроизоляции конструкций.

Водопроницаемость бетона определяется в основном проницаемостью цементного камня и контактной зоны «цементный камень - заполнитель»; кроме того, путями фильтрации жидкости через бетон могут быть микротрещины в цементном камне и дефекты сцепления арматуры с бетоном. Высокая водопроницаемость бетона может привести его к быстрому разрушению из-за коррозии цементного камня.

Для снижения водопроницаемости необходимо применять заполнители надлежащего качества (с чистой поверхностью), а также использовать специальные уплотняющие добавки (жидкое стекло, хлорное железо) или расширяющиеся цементы. Последние используются для устройства бетонной гидроизоляции.

По водонепроницаемости бетон делят на марки W2; W4; W6; W8 и W12. Марка обозначает давление воды (кгс/см2), при котором образец-цилиндр высотой 15 см не пропускает воду при стандартных испытаниях.

Морозостойкость - главный показатель, определяющий долговечность бетонных конструкций в нашем климате. Морозостойкость бетона оценивается путем попеременного замораживания при минус, (18 ± 2)° С и оттаивания в воде при (18 ± 2)° С предварительно насыщенных водой образцов испытуемого бетона. Продолжительность одного цикла - 5... 10 ч в зависимости от размера образцов.

За марку по морозостойкости принимают наибольшее число циклов «замораживания - оттаивания», которое образцы выдерживают без снижения прочности на сжатие более 5 % по сравнению с прочностью контрольных образцов в начале испытаний. Установлены следующие марки бетона по морозостойкости: F25, F35, F50, F75,F100…1000. Стандартом предусмотрены и ускоренные методы испытаний в растворе соли или глубоким замораживанием до минус (50 ± 5)° С.

Причиной разрушения бетона в рассматриваемых условиях является капиллярная пористость (рис. 12.16). Вода по капиллярам попадает внутрь бетона и, замерзая там, постепенно разрушает его структуру. Так, бетон, пористость которого мы рассчитывали выше, в соответствии с рис. 12.16 должен иметь морозостойкость F150...F200.

Для получения бетонов высокой морозостойкости необходимо добиваться минимальной капиллярной пористости (не выше6 %). Это возможно путем снижения содержания воды в бетонной смеси, что, в свою очередь, возможно путем использования:

Жестких бетонных смесей, интенсивно-уплотняемым при укладке;

Пластифицирующих добавок, повышающих удобоукладываемость бетонных смесей без добавления воды.

Теплофизические свойства.

Из них важнейшими являются теплопроводность, теплоемкость и температурные деформации.

Теплопроводность тяжелого бетона даже в воздушно-сухом состоянии велика - около 1,2-1,5 Вт/(м К), т. е. в 1,5...2 раза выше, чем у кирпича. Поэтому использовать тяжелый бетон в ограждающих конструкциях можно только совместно с эффективной теплоизоляцией. Легкие бетоны (см. § 12.7), в особенности ячеистые, имеют невысокую теплопроводность 0,1...0,5 Вт/(м К), и их применение в ограждающих конструкциях предпочтительнее.

Теплоемкость тяжелого бетона, как и других каменных материалов, находится в пределах 0,75...0,92 Дж/(кг К); в среднем - 0,84 Дж/(кг К).

Температурные деформации. Температурный коэффициент линейного расширения тяжелого бетона (10...12) Ю ДС1. Это значит, что при увеличении температуры бетона на 50° С расширение составит примерно 0,5 мм/м. Поэтому во избежание растрескивания сооружения большой протяженности разрезают температурными швами.

Большие колебания температуры могут вызвать внутреннее растрескивание бетона из-за различного теплового расширения крупного заполнителя и цементного камня.

ЛЕГКИЕ БЕТОНЫ

Существенный недостаток обычно тяжелого бетона - большая плотность (2400...2500 кг/м3). Снижая плотность бетона, строители достигают как минимум двух положительных результатов: снижается масса строительных конструкций; повышаются их теплоизоляционные свойства.

Легкие бетоны (в начале XX в. их называли «теплые бетоны») - бетоны с плотностью менее 1800 кг/м3 - универсальный материал для ограждающих и несущих конструкций жилых и промышленных зданий. Из них изготовляют большинство стеновых панелей и блоков, плит кровельных покрытий и камней для укладки стен. Термин «легкие бетоны» объединяет большую группу различных по составу, структуре и свойствам бетонов.

По назначению легкие бетоны подразделяют на:

конструктивные (класс прочности - В7,5...В35; плотность -.1800 кг/м3);

конструктивно-теплоизоляционные (класс прочности не менее ВЗ,0, плотность -600...1400 кг/м3);

теплоизоляционные - особо легкие (плотность < 600 кг/м3).

По строению и способу получения пористой структуры легкие бетоны подразделяют на следующие виды:

бетоны слитного строения на пористых заполнителях;

ячеистые бетоны, в составе которых нет ни крупного, ни мелкого заполнителя, а их роль выполняют мелкие сферические поры (ячейки);

крупнопористые, в которых отсутствует мелкий заполнитель, в результате чего между частицами крупного заполнителя образуются пустоты.

Для легких бетонов установлены следующие классы по прочности (МПа) от В2 до В40. Прочность легких бетонов зависит от качества заполнителей, марки и количества использованного цемента. При этом, естественно, изменяется и плотность бетона.

Для легкого бетона установлены 19 марок по плотности (кг/м3) от D200 до D2000 (с интервалом 100 кг/м3). Пониженная плотность легких бетонов может быть достигнута поризацией цементного камня.

Теплопроводность легкого бетона зависит от его плотности и влажности (табл.9.3). Увеличение объемной влажности на 1 % повышает теплопроводность бетона на 0,015...0,035 Вт/(м К).

Таблица 9.3. Средние значения теплопроводности легких бетонов

Морозостойкость легких бетонов при их пористо

Силикатные материалы и изделия автоклавного твердения представляют собой искусственные строительные конгломераты на основе известково-кремнеземистого (силикатного) камня, синтезируемого в процессе автоклавной обработки под действием пара при высокой температуре и повышенном давле­нии.

Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке, вторым основным компонентом сырьевой смеси является кварцевый песок или минеральные вещества, содер­жащие кремнезем. Чтобы химическое взаимодействие происходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Непременным компонентом во всех смесях выступает вода.

К числу автоклавных силикатных изделий относят силикатный кирпич, крупные силикатные блоки, плиты из тяжелого силикатного бетона, панели пе­рекрытий и стеновые, колонны, балки и прочее.

Легкие заполнители позволяют понизить массу стеновых панелей и дру­гих элементов.

Силикатные изделия выпускают полнотелыми или облегченными со сквозными или полузамкнутыми пустотами.

7.6.1. Силикатный кирпич

Силикатный известково-песчаный кирпич по форме, размерам и основ­ному назначению не отличается от глиняного кирпича.

Кирпич прессуется из увлажненной известково-песчаной смеси: чистый кварцевый песок 92-95 %, воздушная известь 6-8 %, вода - примерно 7 %.

Формование кирпича производится на прессах под давлением 15-20 МПа.

Для твердения кирпич сырец отправляют в автоклав для пропаривания. Автоклав представляет собой стальной цилиндр, с торцов его герметически за­крывают крышками. Твердение происходит не только при высокой температу­ре, но и при высокой влажности, для чего в автоклав подают пар под давлени­ем. Давление пара постепенно повышают. Цикл запаривания продолжается в течение 10-14 часов.

Запаривание сырца в автоклаве условно состоит из пяти этапов:

От начала пуска пара до установления в автоклаве температуры 100 °С;
от начала подъема давления пара до установления максимально задан­
ного;

Выдержка изделия при постоянной температуре и давлении;

С момента снижения давления и температуры до 100 °С;

Остывание изделий до температуры 18-20 °С.

Силикатный кирпич выпускают размером 250><120 х 65 мм как пустоте­лым, так и сплошным. По механической прочности различают марки кирпича 75, 100, 150. Водопоглощение кирпича составляет 8-16 %; значение теплопро­водности 0,71-0,75 Вт/(м-°С); объемная масса 1800-1900 кг/м 3 , т. е. больше, чем у глиняного кирпича, морозостойкость F15. Теплоизоляционные качества стен из силикатного и глиняного кирпича практически равны.

Себестоимость силикатного кирпича ниже на 25-35 %, чем глиняного, так как в два раза меньше расход топлива, в три - электроэнергии, ниже трудоем­кость производства.

Применяют силикатный кирпич так же, как и глиняный, для кладки не­сущих стен жилых, промышленных и гражданских зданий, для столбов, опор и т. д. Его нельзя использовать для кладки фундаментов и цоколей и в изделиях и


конструкциях, подверженных длительному воздействию температур свыше 500 °С.

Известково-шлаковый и известково-зольный кирпич является разновид­ностью силикатного кирпича, отличается меньшей объемной массой и лучши­ми теплоизоляционными свойствами, так как в них кварцевый песок заменен пористым легким шлаком в известково-шлаковом и золой - в известково-зольном кирпиче.

Размеры, физико-механические свойства и способ изготовления анало­гичны силикатному кирпичу.

Применяют известково-зольный и известково-шлаковый кирпич для кладки стен домов малой этажности, а также для кладки стен верхних этажей многоэтажных зданий.

7.6.2. Силикатный бетон

Силикатный бетон относится к тяжелым бетонам.

Из силикатного бетона не ниже марки 150 с применением тепловой обра­ботки в автоклаве изготавливают крупные стеновые блоки внутренних несущих стен, панели перекрытий и несущих перегородок, ступени, плиты, балки.

Элементы, работающие на изгиб, армируют стальными стержнями и сет­ками.

Крупноразмерные силикатные изделия имеют прочность при сжатии 15-40 МПа, объемную массу 1800-2100 кг/м 3 , морозостойкость 50 циклов и более.

Ячеистые силикатные изделия отличаются малой объемной массой и низкой теплопроводностью. Различают изделия пеносиликатные и газосили­катные.

Пеносиликатные изделия изготавливают из смеси извести (до 25 %) и мо­лотого песка, пенообразователя. В газосиликатные добавляют смесь алюминие­вой пудры.

Твердеют ячеистые силикатные изделия в автоклавах.

Изготавливают как армированные, так и неармированные.

В армированных стальная арматура и закладные детали больше подвер­жены коррозии, поэтому стальную арматуру покрывают защитными составами.



Силикатные изделия из ячеистого бетона подразделяют на:

Теплоизоляционные;

Конструктивно-теплоизоляционные;

Конструктивные.

Значение теплопроводности 0,1-0,2 Вт/(м-°С), они довольно морозостой­ки.

Применяют для наружных стен зданий, перегородок, для покрытий про­мышленных зданий, при этом эффективно используются несущие и теплоизо­ляционные качества ячеистых бетонов.

IfnuTnnnkttki» nnnnnru

Силикатными материалами называются материалы из смесей или сплавов силикатов, полисиликатов и алюмосиликатов. Они представляют широко распространенную группу твердофазных материалов, то есть веществ, обладающих совокупностью свойств, которые определяют то или иное их практическое применение (И.В. Тананаев). Так как главным в этом определении материала является признак его применимости, то к группе силикатных материалов относят и некоторые бессиликатные системы, применяемые для тех же целей, что и собственно силикаты.

Силикаты – это соединения различных элементов с кремнеземом (оксидом кремния), в которых он играет роль кислоты. Структурным элементом силикатов является тетраэдрическая ортогруппа 4- с атомом кремния Si 4+ в центре и атомами кислорода O 2- в вершинах тетраэдра, с ребрами длиной 2.6·10 -10 м (0.26 нм). Тетраэдры в силикатах соединены через общие кислородные вершины в кремнекислородные комплексы различной сложности в виде замкнутых колец, цепочек, сеток и слоев. В алюмосиликатах, помимо силикатных тетраэдров, содержатся тетраэдры состава [ AlO 4 ] 5- с атомами алюминия Al 3+ , образующие с силикатными тетраэдрами алюминий-кремний-кислородные комплексы.

В состав сложных силикатов помимо иона Si 4+ входят: катионы: Na + , K + , Са 2+ , Mg 2+ , Mn 2+ , B 3+ , Cr 3+ , Fe 3+ , Al 3+ , Ti 4+ и анионы: О 2 2- , ОН - , F - , Cl - , SO 4 2- , а также вода. Последняя может находиться в составе силикатов в виде конституционной, входящей в кристаллическую решетку в форме ОН - , кристаллизационной Н 2 O и физической, абсорбированной силикатом.

Свойства силикатов зависят от их состава, строения кристаллической решетки, природы сил, действующих между ионами, и, в значительной степени определяются высоким значением энергии связи между атомами кремния и кислорода, которая составляет 450–490 кДж/моль. (Для связи С–О энергия составляет 314 кДж/моль). Большинство силикатов отличаются тугоплавкостью и огнеупорностью, температура плавления их колеблется от 770 до 2130 о С. Твердость силикатов лежит в пределах от 1 до 6-7 ед. по шкале Мооса.

Большинство силикатов малогигроскопичны и стойки к кислотам, что широко используется в различных областях техники и строительства.

Химический состав силикатов принято выражать в виде формул, составленных из символов элементов в порядке возрастания их валентности, или из формул их оксидов в том же порядке. Например, полевой шпат K 2 Al 2 Si 6 O 16 может быть представлен как КАlSi 3 О 8 или К 2 O·Аl 2 O 3 ·6SiО 2 .

Все силикаты подразделяются на природные (минералы) и синтетические (силикатные материалы). Силикаты – самые распространенные химические соединения в коре и мантии 3емли, составляя 82 % их массы, а также в лунных породах и метеоритах. Общее число природных известных силикатов превышает 1500. По происхождению они делятся на кристаллизационные (изверженные) породы и осадочные породы. Природные силикаты используются как сырье в различных областях народного хозяйства:

В технологических процессах, основанных на обжиге и плавке (глины, кварцит, полевой шпат и др.);

В процессах гидротермальной обработки (асбест, слюда и др.);

В строительстве;

В металлургических процессах.

Силикатные материалы насчитывают большое количество различных видов, представляют крупномасштабный продукт химического производства и используются во многих областях народного хозяйства. Сырьем для их производства служат природные минералы (кварцевый песок, глины, полевой шпат, известняк), промышленные продукты (карбонат натрия, бура, сульфат натрия, оксиды и соли различных металлов) и отходы (шлаки, шламы, зола).

На рис. 11.1 приведена классификация силикатов.

Рис. 11.1. Классификация силикатов

По масштабам производства силикатные материалы занимают одно из первых мест. В табл. 11.1. представлены данные о производстве важнейших видов силикатных материалов в Российской Федерации.

Таблица 11.1

Производство силикатных материалов в Российской Федерации

Силикатные материалы на основе строительной извести при нормальных условиях твердения имеют малую прочность. Поэтому, в целях повышения их прочности проводят обработку насыщенным водяным паром при 70…100°С при атмосферном давлении (пропаривание) или искусственную карбонизацию.

Состав статьи:

1. Силикатные материалы автоклавного твердения.

2. Силикатный кирпич.

3. Известково-зольный и известково-шлаковый кирпичи.

4. Силикатный бетон

5. Крупноразмерные изделия из силикатного бетона.

Показатели прочности и долговечности силикатных материалов приобретают максимальные значения в условиях гидротермальной обработки в автоклавах в среде насыщенного водяного пара. Гидротермальную обработку (запаривание) проводят под давлением насыщенного водяного пара: 0,8; 1,2 и 1,6 МПа, что соответствует температурам указанной среды 174,5; 190,7 и 203,3°С.

Автоклавные строительные материалы выпускают в виде кирпича, блоков и панелей для наружных и внутренних стен, панелей перекрытий, колонн, лестничных маршей и площадок, балок и других изделий. Их свойства близки к свойствам цементных бетонов, но они отличаются меньшим расходом вяжущих, широким использованием дешевых местных заполнителей и следовательно меньшей стоимостью.

Однако для их производства необходимы автоклавы.

♣ Силикатный кирпич

Крупноразмерные изделия из силикатного бетона

Силикатным бетоном называют затвердевшую в автоклаве уплотненную смесь, состоящую из кварцевого песка (70…80%),
молотого песка (8..15%) и молотой негашеной извести (6… 10%).Плотный силикатный бетон является разновидностью тяжелого бетона.
Силикатные бетоны, как и цементные, могут быть тяжелыми (заполнители плотные - песок и щебень или песчано-гравийная смесь),легкими (заполнители пористые - керамзит, вспученный перлит, аглопорит и др.) и ячеистыми (заполнителем служат пузырьки воздуха, равномерно распределенные в объеме изделия).

Вяжущим в силикатном бетоне является тонкомолотая известково-кремнеземистая смесь -известково-кремнеземистое вяжущее, способное при затворении водой в процессе тепловлажностной обработки в автоклаве образовывать высокопрочный искусственный камень. В качестве кремнеземистого компонента применяют молотый кварцевый песок, металлургические (главным образом доменные) шлаки, золы ТЭЦ. Кремнеземистый компонент (тонкомолотый песок) оказывает большое влияние на формирование свойств силикатных бетонов.

Так, с возрастанием дисперсности частиц молотого песка повышаются прочность, морозостойкость и другие свойства силикатных материалов.
С увеличением тонкости помола песка повышается относительное содержание СаО в смеси вяжущего до тех пор, пока содержание активной СаО обеспечивает возможность связывания ее во время автоклавной обработки имеющимся песком в низкоосновные гидросиликаты кальция.

По данным ВНИИСтрома, при удельной поверхности молотого песка 2000…2500 см²/г содержание извести в смеси (в пересчете на СаО) составляет
20…28% от массы известково-кремнеземистого вяжущего, а при удельной поверхности песка более 2500 см2/г оптимальное содержание СаО в смешанном вяжущем может быть повышено до 33%.

Автоклавная обработка - последняя и самая важная стадия производства силикатных изделий. В автоклаве происходят сложные процессы превращения исходной, уложенной и уплотненной силикатобетонной смеси в прочные изделия разной плотности,- формы и назначения. В настоящее время выпускаются автоклавы диаметром 2,6 и 3,6 м, длиной 20…30 и 40 м. Как изложено выше, автоклав представляет собой цилиндрический горизонтальный сварной сосуд (котел) с герметически закрывающимися с торцов сферическими крышками.

Котел имеет манометр, показывающий давление пара, и предохранительный клапан, автоматически открывающийся при повышении в котле давления выше предельного. В нижней части автоклава уложены рельсы, по которым передвигаются загружаемые в автоклав вагонетки с изделиями. Автоклавы оборудованы траверсными путями с передаточными тележками - электромостами для загрузки и выгрузки вагонеток и устройствами для автоматического контроля и управления режимом автоклавной обработки.

Для уменьшения теплопотерь в окружающее пространство поверхность автоклава и всех паропроводов покрывают слоем теплоизоляции. Применяют тупиковые или проходные автоклавы. Автоклавы оборудованы магистралями для выпуска насыщенного пара, перепуска отработавшего пара в другой автоклав, в атмосферу, утилизатор и для конденсатоотвода.

При эксплуатации автоклавов необходимо строго соблюдать «Правила устройства и безопасности эксплуатации сосудов, работающих под давлением».
После загрузки автоклава крышку закрывают и в него медленно и равномерно впускают насыщенный пар. Автоклавная обработка является наиболее эффективным средством ускорения твердения бетона. Высокие температуры при наличии в обрабатываемом бетоне воды в капельно-жидкомсостоянии создают благоприятные условия для химического взаимодействия между гидратом оксида кальция и кремнеземом с образованием основного цементирующего вещества - гидросиликатов кальция.

Весь цикл автоклавной обработки (по данным проф. П. И. Боженова) условно делится на пять этапов: 1 - от начала впуска пара до установления в автоклаве температуры 100 °С; 2 - повышение температуры среды и давления пара до назначенного минимума; 3 - изотермическая выдержка при максимальном давлении и температуре; 4 - снижение давления до атмосферного, температуры до 100 °С; 5 - период постепенного остывания изделий от 100 до 18…20 °С либо в автоклаве, либо после выгрузки их из автоклава.

Качество силикатных изделий автоклавного твердения зависит не только от состава и структуры новообразований, но и от правильного управления физическими явлениями, возникающими на различных этапах автоклавной обработки. При автоклавной обработке кроме физико-химических процессов, обеспечивающих синтез гидросиликатов кальция, имеют место физические процессы, связанные с температурными и влажностными градиентами, определяемые термодинамическими свойствами водяного пара и изменениями физических характеристик в сырьевой смеси, а затем и в образовавшемся искусственном силикатном камне.

В составе силикатного камня преобладают низкоосновные гидросиликаты кальция, имеющие тонкоигольчатое или чешуйчатое микрокристаллическое строение типа CSH(B), и тоберморит. Однако наряду с низкоосновными могут быть и более крупнокристаллические высокоосновные гидросиликаты кальция типа C2SH(A).



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту