Советы по строительству и ремонту

Описание:

Смачивая медную пластинку в соляной кислоте и поднося к пламени горелки, замечаем интересный эффект - окрашивание пламени. Огонь переливается красивыми сине-зелеными оттенками. Зрелище довольно впечатляющее и завораживающее.

Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имело бы яркий зеленый цвет. Окислы же меди дают изумрудно-зеленое окрашивание. Например, как видно из ролика, при смачивании меди соляной кислотой пламя окрашивается в голубой цвет с зеленоватым оттенком. А прокаленные медьсодержащие соединения, смоченные в кислоте, окрашивают пламя в лазурно-голубой цвет.

Для справки: Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма.

Объяснение:

Почему пламя видимое? Или чем определяется его яркость?

Некоторое пламя почти не видно, а другое наоборот светит очень ярко. Например, водород горит почти совершенно бесцветным пламенем; пламя чистого спирта тоже светит весьма слабо, а свеча и керосиновая лампа горят ярким светящимся пламенем.

Дело в том, что большая или меньшая яркость всякого пламени зависит от присутствия в нем раскаленных твердых частичек.

В топливе в большем или меньшем количестве содержится углерод. Частички углерода, раньше чем сгореть, накаливаются, - оттого-то пламя газовой горелки, керосиновой лампы и свечи светит - т.к. его подсвечивают раскаленные частицы углерода.

Таким образом, можно и несветящееся или слабо светящееся пламя сделать ярким, обогащая его углеродом или раскаляя им негорючие вещества.

Как получить разноцветное пламя?

Для получения цветного пламени к горящему веществу прибавляют не углерод, а соли металлов, окрашивающих пламя в тот или иной цвет.

Стандартный способ окрашивания слабосветящегося газового пламени - введение в него соединений металлов в форме легколетучих солей - обычно, нитратов (соли азотной кислоты) или хлоридов (соли соляной кислоты):

желтое - соли натрия,

красное - соли стронция, кальция,

зеленое - соли цезия (или бора, в виде борноэтилового или борнометилового эфира),

голубое - соли меди (в виде хлорида).

В синий окрашивает пламя селен, а в сине-зеленый - бор.

Этой способностью горящих металлов и их летучих солей придавать определенную окраску бесцветному пламени пользуются для получения цветных огней (например, в пиротехнике).

Чем определяется цвет пламени (научным языком)

Цвет огня определяется температурой пламени и тем, какие химические вещества в нём сгорают. Высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны. Она соответствует структуре электронных оболочек данного элемента.

♣ Окрашивание пламени солями металлов

Соли некоторых элементов-металлов (* каких? ) при внесении в пламя окрашивают его. Это свойство можно использовать в качественном анализе для обнаружения катионов этих элементов в исследуемом образце.

Для проведения эксперимента требуется нихромовая проволоч­ка. Ее следует промыть в конц. HCl и прокалить в пламени горелки. Если пламя при внесении проволочки окрашено, повторить обра­ботку HCl.

Погрузить проволочку в раствор исследуемой соли и внести в пламя. Отметить окраску. После каждого опыта промывать и прока­ливать проволочку до исчезновения окраски пламени.

Опыты по теме «Металлы I и II групп»

1. Окрашивание пламени

Проделать опыт по окрашиванию пламени хлоридами щелочных и щелочноземельных металлов. * Почему берут хлориды, а не другие соли?

Окрашивание пламени солями (слева направо): лития, натрия, калия, рубидия, цезия, кальция, стронция, бария.

(фото пламени калия – В.В. Загорский)

2. Горение магния на воздухе

Кусочек ленты магния взять тигельными щипцами и сжечь над фарфоровой чашкой. Доказать, что представляет собой продукт. * Как это сделать?

3. Взаимодействие магния с водой и кислотами

А) Налить в пробирку немного воды, добавить фенолфталеин и всыпать немного порошка магния. При необходимости нагреть пробирку. * Вспомните, как кальций взаимодействует с водой.

Б) Налить в одну пробирку 1 мл конц. HCl, а во вторую – 1 мл конц. HNO 3 . Поместить в каждую пробирку по кусочку ленты магния. * Какие продукты образуются? Как это можно доказать?

Опыты по теме «Алюминий»

1. Взаимодействие алюминия с кислотами и щелочами

Изучить в пробирках взаимодействие гранул алюминия с растворами:

на холоду

при нагревании


конц. H 2 SO 4

Наблюдения оформить в виде таблицы.

* Вспомните, как алюминий реагирует с NaOH.

2. Гидроксид алюминия

Получить гидроксид алюминия в трех пробирках прикапывани­ем 1 М раствора аммиака к 1 мл раствора соли алюминия. Подейство­вать на гидроксид в первой пробирке избытком раствора аммиака, во второй – раствором HCl, в третьей – раствором NaOH. В раствор, полученный в третьей пробирке (* что представляет собой этот раствор? ), пропустить СО 2 . * Как и в каком приборе его получить?


3. Гидролиз солей алюминия

А) Определить рН раствора хлорида алюминия. * Объяснить результат с привлечением константы соответствующего процесса.

Б) К раствору хлорида алюминия прилить 1 М раствор карбона­та натрия.

4. Алюминотермия (один из опытов, на выбор, проводится под тягой, в присутствии преподавателя )

А) Алюминотермическое получение хрома

В шамотовый тигель (или фунтик, сделанный из асбеста) поместить сухую однородную смесь 3 г порошка фторида кальция (* для чего он нужен? ), порошков 1 г Cr 2 O 3 и 0,8 г дихромата калия, 0,5 г свеженапиленного порошка алюминия. Сделать посредине ямку, насыпать в нее смесь порошка магния с пероксидом ба­рия, в которую вставить длинную ленту магния. Тигель поместить в песчаную баню так, чтобы он весь находился в песке. Горящей лучиной, вставленной в длинную стеклянную трубку, поджечь ленту магния. По окончании реакции дать тиглю остыть, разбить его и извлечь «королек» хрома.

(фото В. Богданова)

Б) Алюминотермическое получение железа

В шамотовый тигель (или фунтик, сделанный из асбеста) поместить сухую однородную смесь 1,8 г оксида железа (III) и 0,5 г свеженапиленного порошка алюминия. Сделать посредине ямку, насыпать в нее 0,8 г перманганата калия. В середине кучки перманганата сделать с помощью пустой пробирки еще одну ямку. Тигель поместить в песчаную баню так, чтобы он весь находился в песке. Налить сверху немного глицерина так, чтобы он соприкасался только с перманганатом, но не с поверхностью реакционной смеси. По окончании реакции дать тиглю остыть, разбить его и извлечь «королек» железа.

В большинстве случаев пламя камина или костра бывает желто-оранжевым из-за содержащихся в дровах солей. Добавляя определенные химические вещества, можно изменить цвет пламени, чтобы он больше соответствовал особому событию или чтобы просто полюбоваться сменой цветов. Чтобы изменить цвет пламени, вы можете добавить определенные химические соединения непосредственно в огонь, приготовить парафиновые лепешки с химикатами или замочить дрова в специальном химическом растворе. Несмотря на все то удовольствие, которое может подарить вам процесс создания цветного пламени, обязательно соблюдайте особую осторожность, когда работаете с огнем и химическими веществами.

Шаги

Выбор подходящих химикатов

    Выберите цвет (или цвета) пламени. Несмотря на то, что у вас есть возможность выбирать среди целого набора различных оттенков пламени, необходимо решить, какие из них вам наиболее важны, чтобы вы могли подобрать подходящие химические вещества. Пламя можно сделать синим, бирюзовым, красным, розовым, зеленым, оранжевым, фиолетовым, желтым или белым.

    Определите необходимые вам химические реагенты на основании того цвета, который они создают при горении. Чтобы окрасить пламя в нужный цвет, необходимо подобрать подходящие химикаты. Они должны быть порошковыми и не включать в себя хлораты, нитраты или перманганаты, образующие при горении вредные побочные продукты.

    • Чтобы создать синее пламя, возьмите хлорид меди или хлористый кальций.
    • Чтобы сделать пламя бирюзовым, используйте сульфат меди.
    • Для получения красного пламени возьмите хлорид стронция.
    • Для создания розового пламени используйте хлорид лития.
    • Чтобы сделать пламя светло-зеленого цвета, используйте буру.
    • Чтобы получить зеленое пламя, возьмите квасцы.
    • Чтобы создать оранжевое пламя, используйте хлорид натрия.
    • Для создания пламени фиолетового цвета возьмите хлористый калий.
    • Для получения желтого пламени используйте углекислый натрий.
    • Чтобы создать белое пламя, возьмите сернокислый магний.
  1. Купите нужные химические вещества. Некоторые из окрашивающих пламя реагентов относятся к широко используемым в хозяйстве веществам, поэтому их можно найти в продуктовом, хозяйственном или садовом магазине. Другие химикаты можно приобрести в специализированных магазинах химических реактивов или купить в интернет-магазинах.

    • Сульфат меди используется в сантехнических целях для уничтожения корней деревьев, которые могут повредить трубы, поэтому его можно поискать в хозяйственных магазинах.
    • Хлорид натрия – это обычная поваренная соль, поэтому ее можно купить в продуктовом магазине.
    • Хлористый калий используется как средство для смягчения воды, поэтому его также можно поискать в хозяйственных магазинах.
    • Бура нередко используется для стирки, поэтому ее можно найти в отделе моющих средств некоторых супермаркетов.
    • Сернокислый магний содержится в соли Эпсома, которую можно поспрашивать в аптеках.
    • Хлорид меди, хлористый кальций, хлорид лития, углекислый натрий и квасцы следует приобретать в магазинах химических реагентов или через интернет-магазины.

Подсыпание химикатов в огонь

Изготовление парафиновых лепешек

  1. Растопите парафин на водяной бане. Поставьте термостойкую миску на кастрюлю с медленно кипящей водой. Добавьте в миску несколько кусочков парафина и дайте им полностью растять.

    • Можно использовать покупной кусковой или баночный парафин (или воск) либо остатки парафина от старых свечек.
    • Не топите парафин на открытом пламени, иначе вы можете устроить пожар.
  2. Добавьте в парафин химикат и размешайте. Как только парафин полностью растает, снимите его с водяной бани. Добавьте 1–2 столовые ложки (15–30 г) химического реагента и тщательно размешайте до получения однородного состава.

    • Если вы не хотите добавлять химикаты напрямую в парафин, их можно предварительно завернуть в использованный абсорбирующий материал и потом положить полученный сверток в емкость, которую вы собираетесь залить парафином.
  3. Дайте парафиновому составу немного остыть и разлейте его по бумажным чашечкам. После приготовления парафиновой смеси с химикатом, дайте ей остыть в течение 5–10 минут. Пока смесь все еще будет жидкой, разлейте ее по бумажным чашечкам для кексов, чтобы приготовить парафиновые лепешки.

    • Для приготовления парафиновых лепешек можно использовать как небольшие бумажные чашечки, так и картонную упаковку от яиц.
  4. Позвольте парафину застыть. После того как парафин будет разлит по формам, дайте ему постоять до затвердения. На полное охлаждение уйдет примерно час времени.

    Подбросьте парафиновую лепешку в огонь. Когда парафиновые лепешки застынут, освободите одну из них от упаковки. Подбросьте лепешку в самую жаркую часть костра. По мере того как воск будет плавиться, пламя начнет менять свой цвет.

    • В огонь можно добавлять сразу несколько парафиновых лепешек с разными химическими добавками, только располагайте их в разных местах.
    • Парафиновые лепешки хорошо подходят для костров и каминов.

Обработка древесины химикатами

  1. Соберите сухие и легкие материалы для костра. Вам подойдут такие материалы древесного происхождения, как щепки, обрезки пиломатериалов, сосновые шишки и хворост. Также можно использовать скрученные газеты.

    Растворите химикат в воде. Добавьте по 450 г выбранного химиката на каждые 4 л воды, используйте для этого пластиковую емкость. Тщательно размешайте жидкость, чтобы ускорить растворение химиката. Для достижения наилучших результатов добавляйте в воду только один вид химического реагента.

    • Можно также взять стеклянную емкость, но избегайте применения металлической тары, которая может вступить в реакцию с химическими веществами. Соблюдайте осторожность, чтобы не уронить и не разбить используемые стеклянные емкости вблизи от очага костра или камина.
    • Обязательно наденьте защитные очки, маску (или респиратор) и резиновые перчатки, когда будете готовить химический раствор.
    • Лучше всего готовить раствор на открытом воздухе, так как некоторые виды химикатов могут оставлять пятна на рабочей поверхности или выделять вредные испарения.
  2. На сутки замочите в растворе древесные материалы. Перелейте раствор в большую емкость, например, в большой пластиковый контейнер. Положите древесные материалы в сетчатый мешок (такие мешки часто используют для хранения лука или картофеля) для последующего погружения в раствор. Придавите мешок кирпичом или иным тяжелым предметом и оставьте древесину в жидкости на 24 часа.

    Выньте сетку с древесными материалами из раствора и оставьте сушиться. Приподнимите сетчатый мешок с древесными материалами над емкостью с раствором, чтобы дать ему немного стечь. Затем положите древесные материалы на газетный лист или подвесьте их в сухом, хорошо проветриваемом месте и дайте просохнуть в течение 24 часов или более.

    • Обязательно используйте защитные перчатки, когда будете вытаскивать древесные материалы из химического раствора.
    • Если вы не дадите древесине высохнуть, то вам будет трудно разжечь костер.
  3. Сожгите обработанные древесные материалы в огне. Разведите костер или растопите камин. Когда обычные дрова прогорят и огонь уменьшится, подкиньте в него обработанные древесные материалы. Через несколько минут они загорятся, и вы увидите цветное пламя.

Дылдина Юлия

Пламя может иметь разный цвет, все зависит лишь от соли металла, которую в нее добаляют.

Скачать:

Предварительный просмотр:

МАОУ СОШ № 40

Тема

Окрашивание пламени как один из методов аналитической химии.

Дылдина Юдия,

9г кл., МАОУ СОШ № 40

Руководитель:

Гуркина Светлана Михайловна,

Учитель биологии и химии.

Пермь, 2015

  1. Введение.
  2. Глава 1 Аналитическая химия.
  3. Глава 2 Методы аналитической химии.
  4. Глава 3 Реакции окрашивания пламени.
  5. Заключение.

Введение.

С самого раннего детства меня завораживала работа ученых-химиков. Они казались волшебниками, которые познав какие-то скрытые законы природы, творили неведомое. В руках этих волшебников вещества меняли цвет, загорались, нагревали или охлаждались, взрывались. Когда я пришла на уроки химии, то занавеса начала приподниматься, и я начала понимать, как происходят химические процессы. Пройденного курса химии мне оказалось мало, поэтому я решила поработать над проектом. Хотелось, чтобы тема, над которой я работаю, была содержательной, помогла лучше подготовиться к экзамену по химии и удовлетворила мою тягу к красивым и ярким реакциям.

Окрашивание пламени ионами металлов в разные цвета мы изучаем еще на уроках химии, когда проходим щелочные металлы. Когда я заинтересовалась этой темой, оказалось, что в данном случае, она не раскрыта до конца. Я решила изучить ее более подробно.

Цель: с помощью данной работы я хочу научиться определять качественный состав некоторых солей.

Задачи:

  1. Познакомиться с аналитической химией.
  2. Изучить методы аналитической химии и выбрать наиболее приемлемый для моей работы.
  3. С помощью эксперимента определить какой металл входит в состав соли.

Глава 1.

Аналитическая химия.

Аналитическая химия - раздел химии, изучающий химический состав и отчасти структуру веществ.

Цель данной науки заключается в определении химических элементов или групп элементов, входящих в состав веществ.

Предмет её изучения является совершенствование существующих и разработка новых методов анализа, поиск возможностей их практического применения, исследование теоретических основ аналитических методов.

В зависимости от задачи методов различают качественный и количественный анализ.

  1. Качественный анализ - совокупность химических, физико-химических и физических методов, применяемых для обнаружения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе можно использовать легко выполнимые, характерные химические реакции, при которых наблюдается появление или исчезновение окрашивания, выделение или растворение осадка, образование газа и др. Такие реакции называют качественными и с помощью них можно с легкостью проверить состав вещества.

Качественный анализ чаще всего проводят в водных растворах. Он основан на ионных реакциях и позволяет обнаружить катионы или анионы веществ, которые там содержатся. Основоположником такого анализа считается Роберт Бойль. Он ввёл это представление о химических элементах как о не разлагаемых основных частях сложных веществ, после чего он систематизировал все известные в его время качественные реакции.

  1. Количественный анализ - совокупность химических, физико-химических и физических методов определения соотношения компонентов, входящих в состав

анализируемого вещества. По результатам этого можно определить константы равновесия, произведения растворимости, молекулярные и атомные массы. Такой анализ выполнять сложнее, так как он требует аккуратного и более кропотливого подхода, в ином случае результаты могут давать высокие погрешности и работа будет сведена к нулю.

Количественному анализу обычно предшествует качественный анализ.

Глава 2.

Методы химического анализа.

Методы химического анализа делят на 3 группы.

  1. Химические методы основаны на химических реакциях.

В данном случае для анализа можно использовать только такие реакции, которые сопровождаются наглядным внешним эффектом, например изменением окраски раствора, выделением газов, выпадением или растворением осадков и т. п. Эти внешние эффекты и послужат в данном случае аналитическими сигналами. Происходящие химические изменения называют аналитическими реакциями, а вещества, вызывающие эти реакции - химическими реагентами.

Все химические методы делят на две группы:

  1. Реакцию проводят в растворе, так называемым «мокрым путем».
  2. Способ выполнения анализа с твердыми веществами без использования растворителей, такой способ называют «сухим путем». Он делится на пирохимический анализ и анализ методом растирания. При пирохимическом анализе и сследуемое вещество нагревают в пламени газовой горелки. При этом летучие соли (хлориды, нитраты, карбонаты) ряда металлов придают пламени определенную окраску. Другой прием пиротехнического анализа-получение окрашенных перлов (стекол). Для получения перлов соли и оксиды металлов сплавляют с тетраборатом натрия (Na2 В4О7" 10Н2О) или гидрофосфатом натрия-аммония (NaNH4HP04 4Н20) и наблюдают окраску образующихся стекол (перлов).
  3. Метод растирания был предложен в 1898 г. Ф. М. Флавицким. Твердое исследуемое вещество растирают с твердым реагентом, при этом наблюдают внешний эффект. Например, соли кобальта с тиоцианатом аммония могут дать синее окрашивание.
  1. При анализе физическими методами изучают физические свойства вещества с помощью приборов, не прибегая к химическим реакциям. К физическим методам можно отнести спектральный анализ, люминесцентный, рентгеноструктурный и другие способы анализов.
  2. С помощью физико-химических методов изучают физические явления, которые происходят в химических реакциях. Например, при колориметрическом методе измеряют интенсивность окраски в зависимости от концентрации вещества, в кондуктометрическом анализе измеряют изменение электрической проводимости растворов.

Глава 3.

Лабораторная работа.

Реакции окрашивания пламени.

Цель: Изучить окрашивания пламени спиртовки ионами металлов.

В своей работе я решила воспользоваться методом пиротехнического анализа окрашивания пламени ионами металлов.

Исследуемые вещества: соли металлов (фторид натрия, хлорид лития, сульфат меди, хлорид бария, хлорид кальция, сульфат стронция, хлорид магния, сульфат свинца).

Оборудование: фарфоровые чашки, этиловый спирт, стеклянная палочка, концентрированная соляная кислота.

Для проведения работы, я делала раствор соли в этиловом спирте, а затем поджигала. Свой опыт я провела несколько раз, на последнем этапе были отобраны наилучшие образцы, поле чего мы сделали видео.

Выводы:

    Летучие соли многих металлов окрашивают пламя в различные цвета, характерные для этих металлов. Окраска зависит от раскаленных паров свободных металлов, которые получаются в результате термического разложения солей при внесении их в пламя горелки. В моем случае к таким солям относились, фторид натрия и хлорид лития, они дали яркие насыщенные цвета.

Заключение.

Химический анализ используется человеком в очень многих областях, на уроках же химии мы знакомимся лишь с небольшой областью этой сложной науки. Приемы, которые используются в пирохимическом анализе, используются в качественном анализе как предварительное испытание при анализе смеси сухих веществ или как проверочные реакции. В качественном анализе реакции «сухим» путем играют только вспомогательную роль, их используют обычно в качестве первичных испытаний и проведения проверочных реакций.

Кроме того, данные реакции используются человеком и в других отраслях, к примеру в фейерверках. Как мы знаем, фейерверк это декоративные огни разнообразных цветов и форм, получаемые при сжигании пиротехнических составов. Так вот в состав фейерверка пиротехники добавляют разнообразные горючие вещества, среди которых широко представлены неметаллические элементы (кремний, бор, сера). В процессе окисления бора и кремния выделяется большое количество энергии, но не образуются газовые продукты, поэтому эти вещества применяются для изготовления взрывателей замедленного действия (чтобы воспламенить другие составы в определенное время). Многие смеси включают органические углеродсодержащие материалы. Например, древесный уголь (применяется в дымном порохе, снарядах для фейерверков) или сахар (дымовые гранаты). Используются химически активные металлы (алюминий, титан, магний), чье горение при высокой температуре дает яркий свет. Это их свойство стали использовать для запуска фейерверков.

В процессе работы, я поняла насколько сложно и важно работать с веществами, не все удалось в полной мере, как бы хотелось. Как правило, на уроках химии не хватает практикой работы, благодаря которой отрабатываются теоретические навыки. Проект помог мне развить этот навык. Кроме того, я с большим удовольствием познакомила, своих одноклассников с результатами своей работы. Это помогло им закрепить теоретический знания.

Вопрос №1

ОСНОВНЫЕ ПОНЯТИЯ

Аналитическая химия- это раздел химической науки, разрабатывающий на основе фундаментальных законов химии и физики принципиальные методы и приёмы качественного и количественного анализа. Под химическим анализом понимают совокупность действий, которые имеют своей целью получение информации о химическом составе объекта. В зависимости от поставленной задачи определяют элементный, молекулярный, фазовый, изотопный, вещественный состав и т.д. В зависимости от вида идентифицируемых частиц различают: элементный, молекулярный, функциональный, изотопный и фазовый анализы.

Элементный анализ – это качественный и (чаще всего) количественный химический анализ, в результате которого определяют, какие химические элементы и в каких количественных соотношениях входят в состав анализируемого вещества.

^ Функциональный анализ – открытие и определение различных функциональных групп, например, аминогруппы NH 2 , нитрогруппы NO 2 , карбонильной С=О, карбоксильной СООН, гидроксильной ОН, нитрильной СN групп и др.

^ Молекулярный анализ – открытие молекул и определение молекулярного состава анализируемого вещества, т.е. выяснение того, из каких молекул и в каких количественных соотношениях состоит данный анализируемый объект.

^ Фазовый анализ – открытие и определение различных фаз (твердых, жидких, газообразных), входящих в данную анализируемую систему

В зависимости от массы сухого вещества или объема раствора анализируемого вещества методы анализа подразделяются на: макро-, полумикро-, микро-, ультрамикро- и субмикрометод идентификации.
^

Характеристика методов анализа по величине навески

Для химической идентификации чаще всего используют реакции образования окрашенных соединений, выделение или растворение осадков, газов, образование кристаллов характерной формы, окрашивание пламени газовой горелки образование соединений, люминесцирующих в растворах.
^



Окрашивание пламени соединениями некоторых элементов

Окрашивание пламени газовой горелки соединениями металлов используется в качественном анализе для открытия катионов металлов, дающих излучение в видимой области спектра.

Про аналитическую химию говорят, что это наука о методах и средствах химического анализа и в известной мере установления химического строения. Под средствами подразумевают приборы, реактивы, стандартные образцы, программы для компьютеров и т.д.

Методы и средства постоянно изменяются: привлекаются новые подходы, используются новые принципы явления из разных областей знаний. Аналитическая химия это сфера научного поиска, так за создание многих методов анализа присуждены Нобелевские премии (органический микроанализ, полярография, разные виды хроматографического анализа, фотоэлектронная спектроскопия и д. д.). Следует различать метод и методику анализа.

Метод анализавещества – это краткое определение принципов положенных в основу анализа вещества

Методика анализа – это подробное описание всех условий и операций, которые обеспечивают правильность, воспроизводимость и другие регламентированные характеристики результатов анализа.

Правильность анализа характеризует качество анализа, отражающее близость к нулю систематической погрешности результатов.

Воспроизводимость анализа – показывает степень близости друг к другу результатов отдельных измерений (определений) при анализе проб.

Вообщем, под анализом подразумевают получение опытным путем данных о химическом составе и количестве вещества любыми методами – физическими, химическими, и физико-химическими .

Современная аналитическая химия включает в себя три раздела: качественный химический анализ, количественный химический анализ и инструментальные, т.е. физические и физико-химические методы. Выделение инструментальных методов в самостоятельный раздел до некоторой степени условно, поскольку с помощью этих методов решаются задачи как качественного, так и количественного анализа.

Качественный химический анализ – это определение (открытие) химических элементов, ионов, атомов, атомных групп, молекул в анализируемом веществе.

Количественный химический анализ – это определение количественного состава, т.е. установление количества химических элементов, ионов, атомов, атомных групп, молекул в анализируемом веществе.

При проведении качественного и количественного анализов используют аналитические признаки веществ и аналитические реакции.

Аналитические признаки – это свойства анализируемого вещества или продуктов его превращения, которые позволяют судить о наличии в нём тех или иных компонентов.

Характерные аналитические признаки – цвет, запах, угол вращения плоскости поляризации света, радиоактивность, способность к взаимодействию с электромагнитным излучением и др.Аналитическая реакция – это хим. превращение анализируемого вещества при действии аналитического реагента с образованием продуктов с заметными аналитическими признаками.

Чаще всего используют реакции:


  • Образования окрашенных соединений

  • Выделение или растворение осадков

  • Выделение газов

  • Образование кристаллов характерной формы

  • Окрашивание пламени газовой горелки

  • Образование соединений, люминесцирующих в растворах

На результаты проведения аналитических реакций влияют температура, концентрация растворов, pH среды, присутствие других веществ (мешающих, маскирующих, катализирующих процессы)

Пример:

1.
Ион меди Cu ­ 2+ в водных растворах существует в форме аквокомплексов [Сu(H 2 O) m ], при взаимодействии с аммиаком обретает растворимый комплекс ярко сине-голубого цвета:

[Сu(H 2 O) m ] + 4 NH 3 = 2+ + n H 2 O

2.
Ион Ва 2+ можно осадить, прибавляя раствор, содержащий сульфат-ионы , в форме малорастворимого белого осадка сульфата Ва:

Ва 2+ + SO 4 2- → ВаSO 4 ↓

Белый осадок карбоната Са 2+ растворяется при действии кислот, при этом выделяется диоксид углерода:

СаСО 3 + 2НСl → CаСl 2 + СО 2 + Н 2 О

3.
Если к раствору какой-либо соли аммония прибавить щелочь, то выделяется газообразный аммиак. Его можно легко определить по запаху или по посинению влажной красной лакмусовой бумаги:

NН 4 + + ОН - = NН 3 . Н 2 О → NН 3 + Н 2 О

Сульфиды при действии кислот выделяют газообразный сероводород:

S 2- + 2Н + = Н 2 S

4.
Ионы Nа + в капле раствора при взаимодействии с гексагидроксостибат (V) – ионами

Образуют белые кристаллы гексагидроксостибата (V) натрия Nа характерной формы:

Nа + + - = Nа

Форма кристалла хорошо видна при рассмотрении под микроскопом.

Эта реакция используется для открытия катиона Nа +

5.
Окрашивание пламени газовой горелки соединениями металлов используются для открытия катионов металлов, дающих излучение в видимой области спектра. Окрашивание пламени в тот или иной цвет зависит от природы металла.

6.
Иногда проводят аналитические реакции, продукты которых обладают свойствами люминесценции в растворах. Так при взаимодействии катиона c уранилацетатом цинка наблюдается зелёное свечение раствора, а с уранилацетатом натрия в уксусно-кислой среде даёт жёлто-зелёную люминесценцию.

Вопрос №2

Применение потенциометрического и кулонометрического методов анализа вфармации и аналитической химии. Потенциометрический метод – это методкачественного и количественного анализа, основанный на измерениипотенциалов, возникающих между испытуемым раствором и погруженным внего электродом. Данный метод рекомендуется для установлениядоброкачественности и количественного анализа некоторых фармакопейныхпрепаратов. Использую потенциометрическое титрование, можноболее объективно устанавливать точку эквивалентности, поэтому метод находитширокое практическое применение. Одним из направления потенциометрическогометода является хронопотенциометрия. Сущность этого метода заключается втом, что потенциал одного их электродов записывают как функцию времени. Помимоаналитических целей метод может быть использован для изучения кинетикихимических процессов. Потенциометрический метод также можетбыть использован при исследовании процессов разрушения лекарственныхвеществ при хранении. Кулонометрический метод весьма перспективен для анализалекарственных веществ: некоторых местноанестезирующих средств,сульфаниламидов, алкалоидов. Кулонометрический метод основан назаконе Фарадея, устанавливающем связь между количеством вещества,выделившегося на электродах, и затраченным на этот процесс количеством электричества. Фармацевтический анализ – определение качества лекарств и лекарственных средств, изготавливаемых промышленностью и аптеками. Фармацевтический анализ включает: анализ лекарственных препаратов, лекарственного сырья, контроль производства лекарств, токсикологический анализ в объектах растительного и животного происхождения, судебно-химический анализ. Для контроля качества качества лекарственных средств используют фармакопейные методы анализа – методы, описанные в утвержденных на государственном уровне фармакопейных статьях или включенные в Государственную Фармакопею – сборник общегосударственных стандартов и положений, нормирующих качество лекарственных средств. Фармакопейный анализ – это контроль качества лекарственного сырья, субстанций, лекарственных форм, проводимый в соответствии с требованиями Фармакопеи или отдельных фармакопейных статей, не включенных в Фармакопеи.

Вопрос № 3

Аналитический признак - визуально наблюдаемое, инструментально фиксируемое изменение свойств веществ, вступающих в аналитические реакции. К аналитическим признакам относят следующие. 1. Образование (или растворение) осадка с определенными свойствами: цвет, растворимость в определенных растворителях, форма кристалла. Это может быть образование осадка типичной кристаллической формы, характерного цвета или вида (например, белый творожистый осадок AgCl). При отделении, например, фосфата цинка от фосфата алюминия исследуют способность осадка фосфата цинка растворяться в водном растворе аммиака с образованием КС. 2. Получение при действии реактива окрашенного рас- творимого соединения, например Cu(OH)2+4NH3=Cu(NH3)42 - синий аммиакат меди. 3. Выделение газа с известными свойствами. При растворении в хлороводородной кислоте СаСОз и CaSO4 в обоих случаях выделяется газ, который при пропускании через баритовую воду образует внешне одинаковые осадки соответственно карбоната и сульфита бария. Следовательно, с помощью баритовой воды нельзя различить СО2 и SO2. Если же пропустить каждый из газов через подкисленный серной кислотой разбавленный раствор перманганата калия, то СО2 никаких изменений в окраске раствора не вызовет, a SO2 с перманганатом калия будет реагировать как восстановитель: 2KMnO4 + 5S02 + 2H20 = 2MnS04 + K2S04 + 2H2S04, что приведет к исчезновению малиновой окраски раствора перманганата калия. Для открытия или обнаружения ионов или молекул вещества используют качественные аналитические реакции. Химическую реакцию, сопровождающуюся аналитическим признаком (или аналитическим сигналом), по которому можно судить о наличии определяемого вещества, называют аналитической реакцией. Аналитическая реакция должна обладать низким пределом обнаружения. Предел обнаружения - наименьшее количество вещества, которое может быть определено данной реакцией с заданной вероятностью Р. Качественные аналитические реакции проводят, добавляя к раствору анализируемого вещества другие вещества, называемые реагентами. Аналитические реакции могут протекать между жидкими, твердыми и газообразными веществами. Химические аналитические реакции классифицируют на на реакции общие, групповые, селективные и специфичные. Общие реакции - реакции, аналитические сигналы которых одинаковы для многих ионов. Применяемый реагент также называют общим. Групповые реакции - это частный случай общих реакций, используемых в конкретных условиях для выделения определенной группы ионов, обладающих близкими свойствами. Общие и групповые реакции применяют для выделения и разделения ионов сложной смеси. Селективными, или избирательными, называют реакции, позволяющие в смеси ионов обнаруживать ограниченное число катионов или анионов. Так, при действии NH.SCN на смесь катионов только два катиона образуют растворимые окрашенные комплексные соединения: 3_ и (Co(SCN),]2-. Специфическими называют аналитические реакции, аналитический эффект которых характерен только для одного иона в присутствии других ионов. Селективные и специфические реакции в качественном анализе называют качественными характерными (или частными) реакциями

Аналитическая реакция должна отвечать определенным требованиям. Она должна протекать не слишком медленно и быть достаточно простой по выполнению. Для аналитических реакций важнейшими требованиями являются специфичность и чувствительность. Чем меньшее количество ионов вступает в реакцию с данным реактивом, тем более специфична данная реакция. Чем меньшее количество вещества может быть определено с помощью данного реактива, тем более чувствительна эта реакция. Чувствительность реакции можно охарактеризовать количественно при помощи двух показателей: открываемого минимума и предельного разбавления. Открываемым минимумом называется наименьшее количество вещества или иона, которое может быть открыто данным реактивом при данных условиях. Предельное разбавление характеризует наименьшую концентрацию вещества (или иона), при которой еще возможно открыть его данным реактивом.

Вопрос №4

Подготовка образца к анализу. Если количественные измерения проводят в растворе, образец растворяют в подходящем растворителе; при этом концентрацию образца подбирают так, чтобы она находилась в пределах применимости метода. Иногда приходится выделять определяемое вещество из смеси, поскольку многие методы анализа неспецифичны и даже неселективны. Специфичным называют метод, при помощи которого определяется только конкретное вещество, а селективным - предпочтительный для данного вещества метод, пользуясь которым можно определять и другие вещества. Специфичных методов очень мало, селективных - значительно больше. Например, высоко-селективны масс-спектрометрия и иммунологический анализ.

«Растворение пробы»), или переводя образец в растворимое вещество, например, сплавлением с содой, поташом, гидросульфатом натрия, щелочами и т.

Если растворитель не найден, то анализируемый осадок переводят нагреванием либо сплавлением с тем или иным реагентом в растворимые продукты реакций и растворяют эти продукты в воде или в кислотах.

Когда анализируемый образец содержит сульфаты свинца и катионов третьей аналитической группы, нерастворимые в кислотах, их можно перевести в растворимые в кислотах карбонаты кипячением с насыщенным водным раствором соды Na2CO3 и поташа К2С03 или же сплавлением со смесью Na2CO3 и К2СО3.

б) Сплавление со смесью соды и поташа.

При сплавлении сульфаты превращаются в карбонаты, как и при кипячении (см.

Сплавление твердого вещества с реагентами.

При таком сплавлении компоненты твердого анализируемого образца, нерастворимые в воде и в кислотах, превращаются в продукты реакций, растворяющиеся в кислотах.

Так, например, диоксид кремния и нерастворимые силикаты при сплавлении (лучше - в платиновом тигле) со смесью соды и поташа превращаются в растворимые силикаты натрия или калия и соответствующие карбонаты:

можно превратить в растворимые продукты реакции сплавлением с KHSO4 или K2S2O7 (в кварцевых тиглях с крышками), например:

Некоторые оксиды металлов превращаются в растворимые соли также при сплавлении с содой, например:

Во многих других случаях описаны способы и методики перевода нерастворимых образцов в растворимые продукты реакций сплавлением твердых фаз с различными реагентами.

Если твердая проба не растворяется ни в одном из использованных растворителей, то в ряде случаев ее переводят в растворимое состояние обработкой при нагревании (обычно - повторной) насыщенными растворами соды Na2C03, поташа К2С03 или же сплавлением части пробы с этими солями, гидросульфатами щелочных металлов (ЫаНЗОД пиросульфатом калия K2S207, с щелочами и другими веществами.

Вопрос №5

В литературе отсутствуют точные данные о времени зарождения в России токсикологической (судебной)химии как науки. Имеются лишь сведения, согласно которым первые химические исследования, имеющие судебно-химический характер, проводились в России еще в XV столетии. В то время еще не было химических лабораторий для исследования различных объектов на наличие ядов. Судебно-химические исследования имели случайный характер и выполнялись в аптеках.

В конце XVI - начале XVII в. в России был учрежден Аптекарский приказ (данные о точной дате учреждения Аптекарского приказа противоречивы), являющийся высшим медицинским административным учреждением допетровской Руси. Аптекарский приказ руководил врачебным и аптечным делом в России. В его ведении находилась лаборатория, в которой изготовлялись лекарственные препараты, напитки, водка и др. В той же лаборатории и в аптеках изредка производились и отдельные судебно-химические исследования. Однако и в период Аптекарского приказа судебно-медицинские и судебно-химические экспертизы не были узаконены.

Первым документом, узаконившим судебно-медицинскую экспертизу в России, был Воинский устав, изданный Петром I к 1716 г. Как указывает М. Д. Швайкова, судебно-химическая экспертиза в России была, вероятно, узаконена вместе с судебно-медицинской. Однако и после издания Воинского устава вскрытие трупов производилось не повсеместно. Трупы вскрывались в Московском и Петербургском госпиталях, а затем вскрытия постепенно начали производить и в других городах России.

В 1797 г во многих губерниях были учреждены врачебные управы, осуществлявшие руководство всей медицинской деятельностью, в том числе и обеспечивающие проведение судебно-медицинских исследований. При этих управах была учреждена должность штатного фармацевта, который должен был производить химические исследования и обнаружение ядов. Лабораторий при врачебных управах не было. Поэтому штатные фармацевты производили исследование ядов в частных лабораториях или в аптеках.

Создание М. В. Ломоносовым в 1748 г. первой русской химической лаборатории явилось важным событием в развитии русской науки. Лаборатория оказала большое влияние на развитие химии вообще, в том числе и на развитие аналитической химии, методы которой широко использовались при судебно-химических анализах.

Несмотря на определенные успехи в области судебной химии, до начала XIX ст. она развивалась медленно. Научно-теоретический уровень методик, применяемых в экспертной практике, был низким. В то время не было квалифицированных кадров судебных химиков. Судебная химия не преподавалась в университетах и в других учебных заведениях. Из-за низкого уровня развития аналитической химии отсутствовали методики обнаружения многих ядов. Не было учебников и руководств по судебной химии.

XIX ст. характеризуется значительным улучшением состояния судебно-химических исследований. В 1808 г. при медицинском факультете Московского университета было открыто фармацевтическое отделение. В учебный план этого отделения был включен предмет «фармация». При изучении этого предмета особое внимание уделялось токсикологии и обнаружению ядов. Такое же отделение было открыто и в Петербурге при Медико-хирургической академии. Несколько позднее фармацевтические отделения были открыты и в других университетах.

С развитием фармацевтического образования в России выросли кадры ученых, труды которых обогатили судебную химию новыми методами анализа. Появились учебники и руководства по судебной химии.

Одним из первых русских ученых, обогативших судебную химию новыми реакциями и методами анализа, был А. П. Нелюбин (1785-1858), который по образованию был врачом и фармацевтом. Он заведовал кафедрой фармации в Медико-хирургической академии. А. П. Нелюбин выполнил большое количество анализов на наличие ядов. Он первый предложил метод разрушения биологического материала, содержащего «металлические яды», азотной кислотой. Им предложен способ обнаружения соединений мышьяка путем переведения их в мышьяковистый водород. Богатый опыт в области судебно-химического анализа А. П. Нелюбин обобщил в работе «Правила для руководства судебного врача при исследовании отравления», опубликованной в 1824 г. в Военно-медицинском журнале. В этой работе ученый уделил большое внимание исследованию ядов.

А. П. Нелюбин был автором руководства «Общая и частная судебно-медицинская и полицейская химия с присовокупле нием общей токсикологии или науки о ядах и противоядных средствах». В то время под полицейской химией понимали сани-тарно-химический анализ (анализ пищевых продуктов).

Видным ученым в области судебной химии был проф. А. А. Иовский (1796-1857). В Московском университете он читал лекции по общей и аналитической химии, фармакологии и токсикологии. А. А. Иовский был автором около 40 работ, посвященных различным разделам фармации. В 1834 г. вышла его книга «Руководство к распознаванию ядов, противоядий и важнейшему определению первых как в организме, так и вне оного посредством химических средств, названных реактивами».

Большой вклад в развитие фармации и судебной химии внес проф. Ю. К. Трапп (1814-1908), который был учеником А. П. Нелюбина. Во время работы в Медико-хирургической академии Ю. К. Трапп проводил анализы различных объектов на наличие ядов, занимался исследованием фальшивых подписей, чернильных пятен, обугленных ассигнаций и др.

Ю. К. Трапп был автором книг по судебной химии. В 1863 г. вышла его книга «Руководство для первых пособий при отравлении и для химического исследования ядов», а в 1877 г. - книга «Наставление к судебно-химическому исследованию».

Определенный вклад в развитие судебной химии внес профессор Дерптского (в настоящее время Тартуского) университета Г. Драгендорф (1836-1898). Он предложил реактив для обнаружения алкалоидов, разработал метод выделения алкалоидов из биологического материала, основанный на изолировании этих веществ водой, подкисленной серной кислотой. Г. Драгендорф издал учебник «Судебно-химическое открытие ядов» и был первым ученым, который из фармации выделил судебную химию и читал ее как самостоятельную дисциплину.

Ряд работ в области судебной химии выполнил Г. В. Струве (1822-1908), который был специалистом широкого профиля. Его работы посвящены развитию судебной, аналитической и биологической химии. Г. В. Струве предложил реакции обнаружения соединений мышьяка и фосфора с молибдатом, усовершенствовал способы обнаружения цианидов, морфина, стрихнина и некоторых других алкалоидов. Он выполнил ряд сложных экспертиз в области обнаружения ядов в биологическом материале. Часть его работ посвящена исследованию фальсификации пищевых продуктов и т. ц.

В XIX ст. ряд важных исследований в области судебной химии выполнили ученые, которые работали в других областях химии. К ним относятся: Т. Е. Ловиц, Η. Η. Зинин, Д. И. Менделеев и др. Т. Е. Ловиц (1757-1804) выполнил ряд экспертиз для установления причин отравлений. Н. Н. Зинин (1812-1880) производил экспертизы, целью которых было установление недоброкачественности вин, определение наличия пятенкрови

На некоторых предметах, определение примесей в китайском чае и т. д. Он выполнил ряд экспертиз для установления причин отравлений.

Д. И. Менделеев (1834-1907) выполнил ряд экспертиз по заданию судебно-следственных органов. При медицинском департаменте Министерства внутренних дел много лет он был членом медицинского совета, являвшегося в то время высшей судебной экспертной инстанцией в России.

Большая роль в проведении исследований в области судебной химии принадлежит проф. С. П. Дворниченко, который обобщил данные собственных исследований и литературные данные в области судебно-химического анализа и в 1900 г. издал руководство по судебной химии.

Большая роль в развитии отечественной судебной химии принадлежит проф А. П. Дианилу (1851 -1918). Более тридцати лет он работал в Медико-хирургической академии. За это время А. П. Дианин выполнил около 5000 анализов. Работу в академии он совмещал с работой в Медицинском департаменте Министерства внутренних дел. В 1904 г. А. П. Дианин был назначен главным судебно-химическим экспертом.

Великая Октябрьская социалистическая революция внесла коренные изменения во все области общественной жизни и в развитие науки в нашей стране. Изменилась организация судебно-медицинской и судебно-химической экспертизы. Судебно-медицинская экспертиза стала надежным помощником органов советского правосудия в укреплении социалистической законности.

В 1918 г. при Наркомате здравоохранения РСФСР был учрежден отдел медицинской экспертизы. Аналогичные отделы были созданы и при губернских органах здравоохранения. Через некоторое время были введены должности губернских и городских судебно-медицинских экспертов, а также были организованы губернские судебно-медицинские лаборатории.

В 1924 г. в Москве была создана центральная судебно-медицинская лаборатория, преобразованная в 1932 г. в Государственный научно-исследовательский институт судебной медицины. Для руководства судебно-медицинской и судебно-химической экспертизой в нашей стране в 1937 г. при Наркомздраве СССР была введена должность главного судебно-медицинского эксперта.

В 1934 г. Наркомздравом РСФСР по согласованию с прокуратурой РСФСР были утверждены «Правила судебно-медицинского и судебно-химического исследования вещественных доказательств». В 1939 г. Совет Народных Комиссаров СССР принял постановление «О мерах укрепления и развития судебно-медицинской экспертизы». В 1952 г. Министерством здравоохранения СССР но согласованию с Прокуратурой СССР, Министерством юстиции и Министерством государственной безопасности СССР утверждена «Инструкция о производстве судебно-медицинской экспертизы в СССР».

В 1957 г. Министерством здравоохранения СССР по согласованию с Прокуратурой СССР и Министерством внутренних дел СССР были утверждены новые правила судебно-химической экспертизы вещественных доказательств в судебно-химических отделениях судебно-медицинских лабораторий.

В 1962 г. был издан приказ министра здравоохранения СССР «О мерах улучшения судебно-медицинской экспертизы в СССР». В 1978 г. Министерством здравоохранения СССР утверждены новая инструкция о производстве судебно-медицинской экспертизы, положение о бюро судебно-медицинской экспертизы и о его должностных лицах. За последнее время кроме перечисленных выше документов утвержден ряд положений, направленных на улучшение качества судебно-медицинской и судебно-химической экспертизы в СССР.

Большая роль в дальнейшем развитии судебной химии принадлежит ряду отечественных ученых и высшим фармацевтическим учебным заведениям.

В 1920 г. на химико-фармацевтическом факультете Второго Московского университета и в Петроградском химико-фармацевтическом институте были созданы первые кафедры судебной химии, которые стали центром научных исследований в области судебно-химического анализа и центром подготовки экспертов-химиков. Несколько позже кафедры судебной химии были созданы и в других институтах.

Кафедру судебной химии в Ленинградском химико-фармацевтическом институте на протяжении ряда лет возглавлял проф. Л. Ф. Ильин (1872-1937). Он автор ряда работ по судебной химии. Под его руководством выполнено несколько диссертаций.

В развитии судебной химии определенная роль принадлежит проф. Н. И. Кромеру (1866-1941), преподававшему в Пермском фармацевтическом институте, и проф. Н. А. Валяшко (1871 - 1955). В течение 15 лет Н. А. Валяшко был консультантом химического отделения Харьковского научно-исследовательского института судебной экспертизы Министерства юстиции. За это время он опубликовал ряд работ, посвященных судебно-хими-ческому анализу. Под руководством проф. Н. А. Валяшко выполнила и защитила кандидатскую диссертацию Т. В. Марченко, которая долгие годы была заведующей кафедрой судебной химии Харьковского фармацевтического института.

Проф. А. В. Степанов (1872-1946) создал и возглавил кафедру судебной химии в Московском фарминституте. Он был одним из организаторов этого института.

Научная и педагогическая деятельность А. В. Степанова относится к судебной и органической химии. Он разработал метод определения хлорпроизводных органических соединений, который и в настоящее время широко используется при анализе органических галогенсодержащих веществ. А. В. Степанов предложил методминерализации

Биологического материала смесью нитрата аммония и серной кислоты. Совместно с М. Д. Швайковой он разработал скоростной метод выделения алкалоидов из пищевых продуктов растительного происхождения. Им были опубликованы работы, посвященные судебно-химическому анализу, издан учебник по судебной, органической и аналитической химии. Его учебник «Судебная химия» издавался четыре раза.

С 1937 по 1978 г. кафедру судебной химии в Московском фармацевтическом институте (затем на факультете Первого Московского мединститута) возглавляла профессор М. Д. Швайкова (1905-1978) -ученица проф. А. В. Степанова.

Область научных исследований М. Д. Швайковой велика. Совместно с проф. А. В. Степановым она предложила скоростной метод выделения алкалоидов из пищевых продуктов растительного происхождения. М. Д. Швайкова является основоположником применения метода микрокристаллоскопии в судебно-химическом анализе, под ее руководством выполнены также исследования в области судебно-химического анализа «металлических ядов», алкалоидов, барбитуратов и многих других токсических соединений. Это является большим вкладом в судебно-химический анализ.

Большая роль в развитии судебной медицины и судебной химии принадлежит Научно-исследовательскому институту судебной медицины МЗ СССР, который был организован в 1932 г. Институт руководит научно-исследовательской работой в области судебной медицины и судебной химии, а также выполняет сложные и повторные экспертизы по заданию судебно-следственных органов.

Сотрудниками химического отдела этого института разработан метод количественного определения ртути в биологическом материале, метод выделения алкалоидов из биологического материала, основанный на изолировании их водой, подкисленной щавелевой кислотой, разработан и внедрен в практику дробный метод судебно-химического исследования" «металлических ядов», разработаны методы судебно-химического анализа ряда гликозидов; выполняются исследования по анализу ядохимикатов и других токсических веществ, производных фенотиазина.

Сотрудниками химического отдела Научно-исследовательского института судебной медицины издан ряд методических писем и методических указаний, посвященных исследованию ядовитых веществ в трупном материале. Методики, изложенные в этих письмах, широко используются в судебно-химических лабораториях СССР.

Определенный вклад в развитие токсикологической химии внесли кафедры Львовского медицинского института, Ташкентского и Пятигорского фармацевтических институтов, а также другие учебные заведения.

В 1939 г. на фармацевтическом факультете Львовского мединститута была организована кафедра судебной (токсикологической) химии. С 1948 г. кафедру возглавил проф. В. Ф. Крама-ренко. Научным направлением кафедры является разработка методов химико-токсикологического анализа алкалоидов, их синтетических аналогов и барбитуратов. В. Ф. Крамаренко является

автором около 200 научных работ, посвященных применению химических, физических и физико-химических методов анализа (фотоколориметрия, спектрофотометрия, хроматография в тонких слоях сорбентов, гель-хроматография, газожидкостная хроматография и др.) в токсикологической химии. Им предложен метод выделения алкалоидов из биологического материала, основанный на изолировании их водой, подкисленнойсерной кислотой

.

Большая роль в развитии токсикологической химии в нашей стране принадлежит химическому отделу (зав. отделом А. Ф. Рубцов) Государственного научно-исследовательского института судебной медицины Минздрава СССР. В этом институте разработан ряд новых методик исследования токсических веществ. Изданы методические указания по исследованию нескольких ядов в объектах, подвергаемых химико-токсикологическому анализу.

В послевоенные годы достигнуты успехи в подготовке научных кадров по токсикологической (судебной) химии. Так, в Московском фармацевтическом институте, а затем на фармфакультете Первого Московского медицинского института под руководством проф. М. Д. Швайковой выполнено и защищено шесть докторских и сорок кандидатских диссертаций. На этой же кафедре под руководством доц. Б. Н. Изотова выполнено и защищено 12 кандидатских диссертаций.

Во Львовском медицинском институте под руководством проф. В. Ф. Крамаренко подготовлено и защищено пять докторских и 31 кандидатская диссертация. На той же кафедре под руководством проф. В. И. Поповой защищено четыре кандидатские диссертации. Под руководством доцента А. Ф. Рубцова защищено девять кандидатских диссертаций. Такое же количество диссертаций защищено в Ташкентском фармацевтическом институте под руководством проф. Л. Т. Икрамова.

На кафедре токсикологической химии Ташкентского фармацевтического института выполнен ряд исследований, посвященных в основном анализу ядохимикатов.

Исследования в области анализа токсических веществ выполняются на кафедрах токсикологической химиифармацевтических и других институтов.

Результаты химико-токсикологического анализа зависят от правильного выбора объектов исследования, соблюдения правил химико-токсикологического анализа биологического материала на наличие токсическихвеществ, правильного выбора методов исследования и некоторых других факторов.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту