Советы по строительству и ремонту

Опиливанием называется способ резания, при котором осуще­ствляется снятие слоя материала с поверхности заготовки с по­мощью напильника.

Напильник - это многолезвийный режущий инструмент, обес­печивающий сравнительно высокую точность и малую шерохова­тость обрабатываемой поверхности заготовки (детали).

Опиливанием придают детали требуемую форму и размеры, про­изводят пригонку деталей друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами и т. д.

Напильник (рис. 1, а) представляет собой стальной брусок определенного профиля и длины, на поверхности которого имеется насечка

Рис.1 . Напильники:

а - основные части (1- ручка; 2 - хвостовик; 3 - кольцо; 4 - пятка; 5 - грань;

6 - насечка; 7 - ребро; 8 - нос); б - одинарная насечка; в - двойная насечка;

г - рашпильная насечка; д - дуговая насечка; е - насадка ручки; ж - снятие ручки напильника.

Насечка образует мелкие и острозаточенные зубья, имеющие в сечении форму клина. Для напильников с насе­ченным зубом угол заострения β обычно 70°, передний угол γ до 16°, задний угол α от 32 до 40°.

Насечка может быть одинарной (простой), двойной (перекрест­ной), рашпильной (точечной) или дуговой (рис. 1, б - д ).

Напильники с одинарной насечкой снимают широкую стружку, равную длине всей насечки. Их применяют при опиливании мягких металлов.

Напильники с двойной насечкой применяют при опиливании ста­ли, чугуна и других твердых материалов, так как перекрестная насечка размельчает стружку, чем облегчает работу.

Напильниками с рашпильной насечкой, имеющей между зубьями вместительные выемки, что способствует лучшему размещению стружки, обрабатывают очень мягкие металлы и неметаллические материалы.

Напильники с дуговой насечкой имеют большие впадины между зубьями, что обеспечивает высокую производительность и хорошее качество обрабатываемых поверхностей.

Изготовляются напильники из стали У13 или У13 А. После на­сечки зубьев напильники подвергают термической обработке,

Ручки напильников изготовляют обычно из древесины (березы, клена, ясеня и других пород). Приемы насадки ручек показаны на рисунке 1, е и ж.

По назначению напильники делят на следующие группы: общего назначения, специального назначения, надфили, рашпили, машин­ные напильники.

Рис. 2. Формы сечений напильников:

а и б - плоские; в - квадратный; г - трехгранные; д - круглые; е - полукруглый;

ж - ромбический; з - ножовочные.

Улучшение условий и повышение производительности труда при опиливании металла достигаются путем применения механизиро­ванных (электрических и пневматических) напильников.

В условиях учебных мастерских возможно применение механи­зированных ручных опиловочных машинок, которые широко ис­пользуются на производстве.

Универсальная шлифовальная машина (см. рис. 4, г ), работаю­щая от асинхронного электродвигателя 1, имеет шпиндель, к кото­рому крепится гибкий вал 2 с державкой 3 для закрепления рабо­чего инструмента, и сменные прямые и угловые головки, позволяю­щие с помощью круглых фасонных напильников производить опиливание в труднодоступных местах и под разными углами.

Опиливание металла

При опиливании заготовку закрепляют в тисках, при этом опиливаемая поверхность долж­на выступать над уровнем гу­бок тисков на 8-10 мм. Чтобы предохранить заготовку от вмя­тин при зажиме, на губки тисков надевают нагубники из мягкого материала. Рабочая поза при опи­ливании металла аналогична ра­бочей позе при разрезании ме­талла ножовкой.

Правой рукой берут за ручку напильника так, чтобы она упи­ралась в ладонь руки, четыре пальца охватывали ручку снизу, а большой палец помещался сверху (рис. 3, а).

Ладонь левой руки накладывают несколько поперек напильни­ка на расстоянии 20-30 мм от его носка (рис. 3, б).

Перемещают напильник равномерно и плавно на всю длину. Движение напильника вперед является рабочим ходом. Обратный ход - холостой, его выполняют без нажима. При обратном ходе не рекомендуется отрывать напильник от изделия, так как можно потерять опору и нарушить правильное положение инструмента.

Рис. 3. Хватка напильника и балан­сировка им в процессе опиливания:

а - хватка правой рукой; б - хватка ле­вой рукой; в - силы нажима в начале движения;

г - силы нажима в конце движения.

В процессе опиливания необходимо соблюдать координацию усилий нажима на напильник (балансировку). Она заключается в постепенном увеличении во время рабочего хода небольшого вна­чале нажима правой рукой на ручку с одновременным уменьше­нием более сильного вначале нажима левой рукой на носок на­пильника (рис. 3, в, г).

Длина напильника должна превышать размер обрабатываемой поверхности заготовки на 150-200 мм.

Наиболее рациональным темпом опиливания считают 40-60 двойных ходов в минуту.

Опиливание начинают, как правило, с проверки припуска на обработку, который мог бы обеспечить изготовление детали по размерам, указанным на чертеже. Проверив размеры заготовки, определяют базу, т. е. поверхность, от которой следует выдержи­вать размеры детали и взаимное расположение ее поверхностей.

Если степень шероховатости поверхностей на чертеже не ука­зана, то опиливание производят только драчевым напильником. При необходимости получить более ровную поверхность опилива­ние заканчивают личным напильником.

В практике ручной обработки металлов встречаются следую­щие виды опиливания: опиливание плоскостей сопряженных, парал­лельных и перпендикулярных поверхностей деталей; опиливание криволинейных (выпуклых или вогнутых) поверхностей; распиливание и припасовка поверхностей.

В случае опиливания параллельных плоских поверхностей про­верку параллельности производят измерением расстояния между этими поверхностями в нескольких местах, которое должно быть везде одинаковым.

При обработке узких плоскостей на тонких деталях применяют продольное и поперечное опиливание. При опиливании поперек заготовки напильник соприкасается с меньшей поверхностью, по ней проходит больше зубьев, что позволяет снять большой слой металла. Однако при поперечном опиливании поло­жение напильника неустойчивое и легко «завалить» края поверх­ности. Кроме этого, образованию «завалов» может способствовать изгиб тонкой пластинки во время рабочего хода напильника. Про­дольное опиливание создает лучшую опору для напильника и исключает вибрацию плоскости, но снижает производительность обработки.

Для создания лучших условий и повышения производительно­сти труда при опиливании узких плоских поверхностей применяют специальные приспособления: опиловочные призмы, универсаль­ные наметки, наметки-рамки, специальные кондукторы и другие.

Простейшим из них является наметка-рамка (рис. 4, а). Ее применение исключает образование «завалов» обрабатываемой по­верхности. Лицевая сторона наметки-рамки тщательно обработана и закалена до высокой твердости.

Размеченную заготовку вставляют в рамку, слегка прижимая ее винтами к внутренней стенке рамки. Уточняют установку, добиваясь совпадения риски на заготовке с внутренним ребром рам­ки, после чего окончательно закрепляют винты.

Рис. 4. Опиливание поверхностей:

а - опиливание с помощью наметки-рамки; б - прием опиливания выпуклых поверхностей; в - прием опиливания вогнутых поверхностей;г - опиливание с помощью уни­версальной шлифовальной машины (1 - электродвигатель; 2 - гибкий вал; 3 - державка с инструментом).

Затем рамку зажимают в тисках и опиливают узкую поверхность заготовки. Обработку ведут до тех пор, пока напильник не коснет­ся верхней плоскости рамки. Поскольку эта плоскость рамки об­работана с высокой точностью, то и опиливаемая плоскость будет точной и не потребует дополнительной проверки при помощи ли­нейки.

При обработке плоскостей, расположен­ных под углом 90°, сначала опиливают плоскость, прини­маемую за базовую, добиваясь ее плоскостности, затем плоскость, перпендикулярную к базовой. Наружные углы обрабатывают пло­ским напильником. Контроль осуществляют внутренним углом угольника. Угольник прикладывают к базовой плоскости и, при­жимая к ней, перемещают до соприкосновения с проверяемой по­верхностью. Отсутствие просвета указывает, что перпендикуляр­ность поверхностей обеспечена. Если световая щель сужается или расширяется, то угол между поверхностями больше или меньше 90°.

Поверхности, расположенные под углом больше или меньше 90°, обрабатываются аналогичным образом. Наружные углы обрабатываются плоскими напильника­ми, внутренние - ромбическими, трехгранными и другими. Конт­роль обработки ведется угломерами или специальными шабло­нами.

При обработке криволинейных поверх­ностей, кроме обычных приемов опиливания, применяются и специальные.

Выпуклые криволинейные поверхности можно обрабатывать, ис­пользуя прием раскачивания напильника (рис. 4, б ). При пере­мещении напильника сначала его носок касается заготовки, ручка опущена. По мере продвижения напильника носок опускается, а ручка приподнимается. Во время обратного хода движения напиль­ника противоположные.

Вогнутые криволинейные поверхности в зависимости от радиу­са их кривизны обрабатываются круглыми или полукруглыми напильниками. Напильник совершает сложное движение - вперед и в сторону с поворотом вокруг своей оси (рис. 4, в). В процессе обработки криволинейных поверхностей заготовку обычно перио­дически перезажимают с тем, чтобы обрабатываемый участок рас­полагался под напильником.

Распиливанием называется обработка отверстий (пройм) различ­ной формы и размеров при помощи напильников. По применяе­мому инструменту и приемам работы распиливание аналогично опиливанию и является его разновидностью.

Для распиливания применяются напильники различных типов и размеров. Выбор напильников определяется формой и размерами проймы. Проймы с плоскими поверхностями и пазы обрабатывают­ся плоскими напильниками, а при малых размерах - квадратными. Углы в проймах распиливаются трехгранными, ромбическими, но­жовочными и другими напильниками. Проймы криволинейной фор­мы обрабатывают круглыми и полукруглыми напильниками.

Распиливание обычно выполняют в тисках. В крупных дета­лях проймы распиливают на месте установки этих деталей.

Подготовка к распиливанию начинается с разметки проймы. За­тем удаляется излишний металл из ее внутренней полости.

При больших размерах проймы и наибольшей толщине заго­товки металл вырезается ножовкой. Для этого сверлят по углам проймы отверстия, заводят в одно из отверстий ножовочное полот­но, собирают ножовку и, отступя от разметочной линии на величину припуска на распиливание, вырезают внутреннюю полость.

Припасовкой называется взаимная пригонка двух деталей, соп­рягающихся без зазора. Припасовывают как замкнутые, так и по­лузамкнутые контуры. Припасовка характеризуется большой точ­ностью обработки. Из двух припасовываемых деталей отверстие принято называть, как и при распиливании, проймой, а деталь, входящую в пройму, - вкладышем.

Припасовка применяется как окончательная операция при об­работке деталей шарнирных соединений и чаще всего при изготов­лении различных шаблонов. Выполняется припасовка напильни­ками с мелкой или очень мелкой насечкой.

Точность припасовки считается достаточной, если вкладыш входит в пройму без перекоса, качки и просветов.

Возможные виды брака при опиливании металла и их причины:

Неточность размеров опиленной заготовки (снятие очень большого или малого слоя металла) вследствие неточности разметки, непра­вильности измерения или неточности измерительного инструмента;

Неплоскостность поверхности и «завалы» краев заготовки как результат неумения правильно выполнять приемы опиливания;

Вмятины и другие повреждения поверхности заготовки в ре­зультате неправильного ее зажима в тисках.

Дефекты конструкции ВС. К дефектам конструкции ВС можно отнести всеразлиные сколы, микро трещины, коррозионные поражения и т.д. Дефекты обнаруживаются с помощью методов неразрушающего контроля.

Обрабоотка резанием. Обработка, заключающаяся в образовании новых поверхностей отделением поверхностных слоёв материала с образованием стружки . Осуществляется путём снятия стружкирежущим инструментом (резцом, фрезой и пр.)

Обработка склеиванием. Клеевые композиции при ремонте применяются для восстановления деталей с трещинами и пробоинами (блоки цилиндров, картеры агрегатов, корпусы узлов, емкости, фильтры и др.) для склеивания поврежденных деталей взамен клепки при ремонте тормозных для выравнивания поверхности кабин и оперения перед покраской как защитные покрытия длявосстановления размеров и геометрической формы  изношенных деталей, устранения задиров и царапин в трущихся поверхностях для изготовления ремонтных деталей из штампованных заготовок и неметаллических материалов для обеспечения прочности и герметичности неподвижных сопряжений.
Технологические процессы восстановления деталей клеевыми композициямиотличаются простотой выполнения операций и не требуют сложного оборудования. Применение клеев допускает соединение однородных и неоднородных материалов, что осуществить другими способами весьма сложно. При склеивании детали не подвергаются тепловым и силовым нагрузкам, поэтому этим способом можно восстанавливать детали сложной формы и любых размеров.

Обработка сваркой. Сварка в ремонтном производстве находит очень широкое применение. Многие дефекты и повреждения устраняются сваркой, в том чис­ле различные трещины, отколы, пробоины, срыв или износ резьбы и т. п. Сваркой называ­ется процесс соединения металлических частей в одно неразъемное целое при помощи нагре­ва металла в местах соединения. При ремонте автомобильных деталей нагрев металла осу­ществляют газовым пламенем или электриче­ской дугой. Так как детали изготавливаются из различных металлов (сталь, серый и ковкий чугун, цветные металлы и сплавы), то приме­няют соответствующий способ сварки. При горячей сварке деталь медленно на­гревают до температуры 600-650°С в специ­альных печах или горнах. Чем больше содер­жание углерода в чугуне, тем медленнее дол­жна быть скорость нагрева. Предварительный нагрев осуществляют при сварке и заварке трещин в ответственных деталях и деталях сложной конфигурации. После подогрева де­таль помещают в термоизоляционный кожух со специальными задвижками или закрывают листовым асбестом, оставляя открытым толь­ко место сварки.

Обработка пайкой. Пайкой называется процесс получения неразъемного соединения или герметичного соединения при помощи присадочных материалов - припоев.При пайке основной металл детали не плавится. Надежность соединения обеспечивается за счет диффузии припоя в металл и зависит от правильного подбора флюса и припоя, тщательности очистки поверхности и наличия минимального зазора в стыке соединенных деталей. В зависимости от температуры плавления припои делятся на мягкие и твердые: мягкие припоиимеют температуру плавления до 300 °С, а твердые – 800 °С и выше.

Бортовой аварийный регистратор - это устройство, используемое в авиации для записи основных параметров полёта, показателей систем самолёта, переговоров экипажа и т. д. для выяснения причин лётных происшествий. Бортовой самописец собирает такие данные как:

o параметры техники: давление топлива, давление в гидросистемах, обороты двигателей, температура и т. д.;

o действия экипажа: степень отклонения органов управления, уборка и выпуск взлётно-посадочной механизации, нажатия на кнопки;

o навигационные данные: скорость и высота полёта, курс, прохождение приводных маяков и прочее.

Запись информации производится либо на магнитные носители (металлическая проволока или магнитная лента), либо - в современных регистраторах - на твердотельные накопители (флэш-память). Затем эту информацию можно считать и расшифровать в виде последовательных записей с указанием их времени.

Контрольно-измерительная и проверочная аппаратура. К инструментам и приборам для точных измерений относятся штангенциркули одно– или двухсторонние, эталонные и угловые плитки, микрометры для наружных измерений, нутромеры микрометрические, глубиномеры микрометрические, индикаторы, профилометры, проекторы, измерительные микроскопы, измерительные машины, а также разного вида пневматические и электрические приборы и вспомогательные устройства.

Измерительные индикаторы предназначены для сравнительных измерений путем определения отклонений от заданного размера. В сочетании с соответствующими приспособлениями индикаторы могут применяться для непосредственных измерений.

Измерительные индикаторы, являющиеся механическими стрелочными приборами, широко применяются для измерения диаметров, длин, для проверки геометрической формы, соосности, овальности, прямолинейности, плоскостности и т. д. Кроме того, индикаторы часто используются как составная часть приборов и приспособлений для автоматического контроля и сортировки. Цена деления шкалы индикатора обычно 0,01 мм, в ряде случаев – 0,002 мм. Разновидностью измерительных индикаторов являются миниметры и микрокаторы.

Измерительные приспособления предназначены для измерения изделий больших размеров.

Измерительные проекторы – это приборы, относящиеся к группе оптических, основанные на использовании метода бесконтактных измерений, т. е. измерений размеров не самого предмета, а его изображения, воспроизведенного на экране в многократном увеличении.

Измерительные микроскопы, как и проекторы, относятся к группе оптических приборов, в которых используется бесконтактный метод измерений. Они отличаются от проекторов тем, что наблюдение и измерение выполняются не на изображении предмета, спроектированном на экране, а на увеличенном изображении предмета, наблюдаемом в окуляре микроскопа. Измерительный микроскоп служит для измерения длин, углов и профилей разнообразных изделий (резьб, зубьев, шестерен и т. д.).

Обслуживание топливных фильтров. Основными работами технического обслуживания системы питания топливом являются: промывка фильтров грубой очистки; смена фильтрующих элементов тонкой очистки; проверка работоспособности топливоподкачивающего насоса; проверка и регулировка топливного насоса высокого давления на начало, величину и равномерность подачи топлива в цилиндры двигателя; установка угла опережения впрыска топлива; проверка и регулировка форсунок. Причем проверка топливоподкачивающего насоса и загрязненности топливных фильтрующих элементов должна быть систематической и проводиться инструментальными методами (например, приспособлением КИ-13943 ГосНИТИ).

Уход за топливными фильтрами заключается в промывке фильтра грубой очистки и смене фильтрующих элементов в фильтрах тонкой очистки.

Для промывки фильтра грубой очистки необходимо слить из него топливо и произвести его разборку. Сетка фильтрующего элемента и внутренняя полость стакана промываются бензином или дизельным топливом и продуваются сжатым воздухом.

Перед заменой старых фильтрующих элементов на новые топливо из фильтров тонкой очистки сливается и его стаканы промываются бензином или дизельным топливом и продуваются сжатым воздухом.

После сборки фильтров грубой и тонкой очистки необходимо убедиться в отсутствии подсоса воздуха через фильтры при работающем двигателе. Подсос воздуха и подтекание топлива устраняются подтягиванием болтов крепления стаканов к корпусам.

Фильтр тонкой очистки промывают на ультразвуковой установке в водном растворе или креолине. Качество промывки фильтров на ультразвуковой установке проверяется с помощью прибора ПКФ (рис.1.)

Рисунок 1.

Рис.1. Контроль качества промывки фильтров прибором ПКФ:
1 - сигнальная кнопка; 2- ручка; 3, 8, 10 - уплотнительные кольца; 4 - корпус; 5 - поплавок; 6- переходник; 7 - фланец; 9 - проверяемый фильтр; 11 - заглушка; 12 - секундомер). Для этого на прибор устанавливают переходник, соответствующий проверяемому фильтру, и фильтр с одной заглушкой устанавливают на переходник. В емкость заливают масло АМГ-10, подогретое до температуры 18-23 °С так, чтобы уровень масла был на 50...60 мм выше верхнего края проверяемого фильтра. Фильтр опускают на короткое время в масло АМГ-10, после чего дают возможность стечь маслу. Подготовляют секундомер, заглушают отверстие на рукоятке прибора, и прибор с фильтром опускают в емкость с маслом АМГ-10. Открывают отверстие на рукоятке прибора и включают секундомер. В момент совпадения сигнальной кнопки с уровнем верхнего торца рукоятки прибора секундомер выключают и определяют время заполнения фильтра маслом, которое должно быть не более 5 с. Если это время окажется более 5 с, то фильтр промывают повторно на ультразвуковой установке или его заменяют.

Проверка на герметичность. Проверка производится следующим образом: вначале необходимо включить компрессор и наблюдать за повышением давления в кабине по ртутному манометру. Скорость нарастания давления должна быть не более 0,3-0,4 мм рт. ст. При достижении в кабине избыточного напора 0,1 кгс/см2 необходимо произвести внешний осмотр фюзеляжа и выявить места утечки воздуха, поддерживая это давление. Затем медленно (не более 0,3- 0,4 мм рт. ст.) довести избыточный набор,в кабине до 0,3 кгс/см2, после чего выключить подачу воздуха от компрессора; замерить время падения.избыточного давления с 0,3 до 0,1 кгс/см2. Фюзеляж считается герметичным, если время падения избыточного напора с 0,3 до 0,1 кгс/см2 не менее 10 мин. При проверке герметичности (при повышении и снижении давления) следует осмотреть места возможной утечки. В случае если время падения давления менее 10 мин, необходимо обязательно проверить контуры люков, входной двери, остекление кабин, места стыковки обшивки герметического отсека (по всему фюзеляжу) и отсек носового колеса. Дополнительными местами утечки могут быть гермовыводы электрожгутов, труб, ШДГ и антенн. Устранение выявленных дефектов следует производить после стравливания.избыточного давления до нуля. Места с явными утечкам, и воздуха подлежат обязательной заделке, даже если время падения давления укладывается,в норму.

Турбовинтово́й дви́гатель - тип газотурбинного двигателя, в котором основная часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги. Наличие понижающего редуктора обусловлено необходимостью преобразования мощности: турбина - высокооборотный агрегат с малым крутящим моментом, в то время как для вала воздушного винта требуются относительно малые обороты, но большой крутящий момент.

Существуют две основные разновидности турбовинтовых двигателей: двухвальные, или со свободной турбиной (наиболее распространенные в настоящее время), и одновальные. В первом случае между газовой турбиной (называемой в этих двигателях газогенератором) и трансмиссией не существует механической связи, и привод осуществляется газодинамическим способом. Воздушный винт не находится на общем валу с турбиной и компрессором. Турбин в таком двигателе две: одна приводит компрессор, другая (через понижающий редуктор) - винт. Такая конструкция имеет ряд премуществ, в том числе и возможность работы силового агрегата самолёта на земле без передачи на воздушный винт (в этом случае используется тормоз воздушного винта, а работающий газотурбинный агрегат обеспечивает самолёт электрической мощностью и воздухом высокого давления для бортовых систем).

В связи с уменьшением эффективности воздушного винта при увеличении скорости полёта, турбовинтовые двигатели в основном распространены на относительно малоскоростных летательных аппаратах, таких как самолёты местных авиалиний и транспортные самолёты. Вместе с тем, турбовинтовые двигатели на малых скоростях полёта гораздо экономичнее, чем турбореактивные двигатели.

ПМД-70

Назначение.

Порошковый дефектоскоп ПМД-70 представляет собой универсальное многофункциональное устройство, осуществляющее магнитопорошковый и магнитолюминисцентный методы неразрущающего контроля металлических изделий и сварных соединений. Прибор предназначен для выявления различных дефектов как на поверхности детали, так и в верхнем слое ферромагнитного материала.

ПМД-70 применяется для проведения дефектоскопических исследований на производствах, изготавливающих, обслуживающих и эксплуатирующих металлические конструкции и изделия, соединенные между собой сварочными операциями. Дефектоскоп эффективен и в полевых условиях, при работе на открытом воздухе и при испытаниях в лабораториях.

Принцип действия.

Порошковый дефектоскоп имеет несколько разновидностей, отличающихся видом намагничивающих устройств: электромагниты, кабели, контактные группы, и их питанием: от сети переменного или постоянного тока. С помощью этих устройств и импульсного блока прибор наводит электромагнитное поле в контролируемом объекте, которое намагничивают отдельные участки изделия продольным или циркулярным полем. Далее на изделие наносится магнитная суспензия или порошок, который является своего родом индикатором намагниченности. По измеренной величине магнитной индукции определяется наличие и глубина повреждения. С помощью нанесения данного индикатора составляется визуальная картина дефекта. Размагничивание материала изделия происходит при помощи триггеров, работающих в динамическом режиме, и осуществляющих реверсивное течение тока через намагничивающие устройства.

Вывод

В результате прохождения слесарно-механической практики я:

Ознакомился с техникой безопасности, охраной труда при работе с инструментами, оборудование и приспособлениями для выполнения слесарно-механических работ;

Приобрел навыки практической работы в качестве исполнителя ведения слесарно-механической работы;

Закрепил теоретические знания,полученные при изучении специальных дисциплин;

Ознакомился со слесарно-механическими оборудованиями, инструментами и научился пользововаться ими;

Ознакомился с приборами и методами обнаружения дефектов.

Хотелось бы подробно рассмотреть, изучить детали ВС и поучаствовать в техническом обслуживании. Надеюсь заполнить эти пробелы в следующей производственной практике.

Цеулёв Н.Е.

Министерство образования и науки Республики Казахстан

АО «Академия Гражданской Авиации»

Авиационный факультет

Кафедра №10 «Авиационная техника и летная эксплаутация»

Следующая страница>>

ОПИЛИВАНИЕ МЕТАЛЛОВ

§ 1. Назначение опиливания и инструмент. Напильники.

Формы сечения напильников . Виды насечек. Геометрия зубьев напильника .

Опиливанием называется технологическая операция, осуществляемая напильниками путем срезания (спиливания) слоев металла. Различают ручное и машинное опиливание.

Ручное опиливание осуществляется ручными напильниками. По форме сечения применяются (рис. 67, а-ж) плоские, квадратные, трехгранные, полукруглые, ромбические и ножовочные напильники.



Рис. 67. Формы сечения напильников :

а - плоские, б - квадратные, в - трехгранные, г - полукруглые, д - круглые, е - ромбические, ж - ножовочные

Главным элементом напильника являются насечки, образующие режущие зубья. Различают несколько видов насечки.

Напильники с одинарной насечкой (рис. 68, а) применяют для обработки мягких материалов (латунь, цинк, баббит, свинец, алюминий, медь и др.), обладающих незначительным сопротивлением резанию. Одинарная насечка наносится под углом 70-80° к оси напильника.

Рис. 68. Виды насечек напильников :

а - одинарная, б - двойная, в - рашпильная, г - дуговая

Напильники с двойной насечкой (рис. 68, б) применяют для опиливания стали, чугуна и других твердых металлов с большим сопротивлением резанию. Наилучшими являются напильники с насечками, образующими угол 120-130°.

Напильники с рашпильной насечкой (рис. 68, в) применяются для обработки легких металлов и неметаллов.

Напильники с полукруглыми зубьями (рис. 68, г) имеют неравномерный шаг насечки, отдельные зубья снимают более или менее крупную стружку, благодаря чему напильники работают более равномерно.

Все разновидности напильников, в зависимости от величины зуба, насечки и числа зубьев, приходящихся на 1 см длины, подразделяются на шесть номеров. Основные характеристики напильников в зависимости от номера приведены в табл. 3.

3. Основные характеристики напильников

Любой напильник состоит из следующих частей: носка, ребра, грани и пятки, образующих рабочую часть напильника, и хвостовика (рис. 69).


Рис. 69. Элементы напильника

Зубья напильников имеют определенную геометрию (рис. 70), которая обеспечивает процесс резания.

Рис. 70. Геометрия зубьев напильника

Выбор напильника производится в соответствии с конкретными требованиями условий обработки. Часто при выборе напильников руководствуются следующими соображениями: длина напильника должна быть на 150 мм больше длины обрабатываемой поверхности. Для доводки и опиливания тонких пластин выбирают короткие напильники (100-160 мм), так как насечка у них мельче. Если нужно снять большой припуск, выбирают напильники длиной 300-400 мм, у них насечка крупнее и обработка будет осуществляться значительно интенсивнее.

Небольшие напильники называют надфилями. Надфили применяют для выпиливания отверстий, пазов, выемок и так далее, когда обычный напильник применить нельзя из-за значительных габаритов. В зависимости от числа насечек на 1 см надфили разделены на шесть классов: с 1-го по 6-й. Форма сечения надфилей такая же, как и у напильников.

  • " onclick="window.open(this.href," win2 return false >Печать
  • E-mail
Подробности Категория: Сортовой прокат

Опиливание заготовок из сортового проката

С помощью напильника снимают небольшой припуск с заготовки, тем самым добиваются, чтобы деталь имела точные размеры и форму, указанные на чертеже.

Основные части напильника показаны ниже. Это – нос ; рёбра ; грани ; пятка ; кольцо , одеваемое на ручку для предотвращения раскалывания ручки.

Общий вид напильника и профиль насечек в увеличенном виде показаны на рисунке слева. Профили насечек бывают: 1 одинарные , 2 двойные , 3 рашпильные .
Каждая насечка - зуб напильника - имеет форму клина. Напильники изготавливают из инструментальной стали. Отличаются они друг от друга формой поперечного сечения, видом насечки, числом насечек на единицу длины и длиной рабочей части.

В зависимости от формы обрабатываемой поверхности выбирают напильники того или иного профиля (рис. справа).

Так, для обработки плоскостей применяют плоские напильники, сферических поверхностей - полукруглые , цилиндрических отверстий - круглые , прямоугольных пазов и отверстий - квадратные , а углов - трехгранные .

По величине зубьев насечки и их числу на 10 мм длины рабочей части различают напильники(см. рис. слева): драчовые - 5-12 зубьев (крупная насечка) ; личные -13-26 зубьев (средняя насечка) ; бархатные - 42-80 зубьев (мелкая насечка). Напильники с очень крупной насечкой называются рашпилями , с очень мелкой насечкой надфилями .

Драчовые напильники применяют только для первичной, черновой обработки поверхности заготовок .

Личными напильниками работают, когда основной слой металла уже снят драчовым напильником . Для опиливания личным напильником оставляют слой металла не более 0,2...0,4 мм.

Бархатным напильником доводят заготовку детали до заданных размеров .

Рашпилем опиливают мягкие металлы, кожу, древесину, резину .

Надфили (рис. справа) используют для опиливания мелких деталей из металла, пластика, дерева.

Перед началом опиливания необходимо правильно организовать свое рабочее место, и прежде всего наиболее рационально разложить инструменты и заготовки на нем. Размеченную заготовку прочно зажимают в тисках. При этом поверхность обработки должна быть выше уровня губок тисков.


Выполняя опиливание, надо занимать правильную рабочую позу (рис. слева): стоять следует вполоборота к верстаку на расстоянии 150...200 мм от его переднего края, левую ногу выставляют вперед по направлению движения напильника. Закругленная часть ручки напильника должна упираться в ладонь правой руки. Четырьмя пальцами обхватывают ручку, а большой палец накладывают сверху и прижимают к ручке. Вытянутые пальцы левой руки кладут на носок напильника, отступив от края на 20...30 мм.

Во время работы напильник совершает возвратно-поступательные движения : вперед - рабочий ход , назад - холостой . В процессе рабочего хода инструмент прижимают к заготовке , во время холостого - ведут без нажима . Перемещать инструмент надо строго в горизонтальной плоскости . Сила нажатия на инструмент зависит от положения напильника (рис. справа). В начале рабочего хода левой рукой нажимают немного сильнее, чем правой . Когда к заготовке подводится средняя часть напильника, нажим на носок и ручку инструмента должен быть примерно одинаковым. В конце рабочего хода правой рукой нажимают сильнее, чем левой .

Различают несколько способов опиливания : поперечное , продольное, перекрестное и к руговое.
Поперечное опиливание (рис. слева а ) выполняют при снятии больших припусков. При продольном опиливании заготовок (рис. б ) обеспечивается прямолинейность обработанной поверхности. Лучше сочетать эти два способа опиливания: сначала опиливание выполняют поперек, а затем - вдоль.
При опиливании перекрестным штрихом (рис. в ) обеспечивается хороший самоконтроль за ходом и качеством работы. Сначала опиливают косым штрихом слева направо, затем, не прерывая работы, прямым штрихом и заканчивают опиливание снова косым штрихом, но уже справа налево.
Круговое опиливание (рис. г ) выполняют в тех случаях, когда с обрабатываемой поверхности нужно снять частые неровности.

Правильность опиливания проверяют линейкой или угольником на просвет (рис. справа): если просвет отсутствует - поверхность ровная.
Долговечность напильников во многом зависит от ухода за ними.

Работать можно напильником с исправной и прочно насаженной ручкой.
По окончании работы напильники следует очищать от пыли, опилок, грязи, масляных веществ. Напильники хранят так, чтобы их насечки не соприкасались друг с другом.
Опилки с поверхности изделия надо удалять специальной щеткой.

К атегория: Санитарно-техническе работы

Опиливание металла

Опиливанием называется снятие поверхностного слоя с металлическои детали при помощи режущего инструмента - напильника.

Опиливание производят для получения определенной формы, точных размеров, гладкой прямолинейной или криволинейной поверхности, для подгонки деталей друг к другу, образования наружных и внутренних углов, обработки отверстий, снятия фасок.

Мелкие детали опиливают в тисках, установленных в мастерской, а крупные - на месте заготовки и сборки их.

Напильник представляет собой стальной закаленный брусок с насеченными на рабочих поверхностях правильно расположенными мелкими зубьями. Насечка напильника может быть одинарной под углам 70-80° к ребру напильника и двойной (перекрестной). При двойной насечке нижняя выполняется под углом 55°, а верхняя-под углом 70°. Угол заострения зуба напильников - 70°.

Зубьями напильника срезают с поверхности металла небольшой слой в виде стружки. Напильниками с одинарной насечкой срезают широкую стружку, а с двойной насечкой - мелкую.

Рис. 1. Классификация напильников: а - по виду насечки, б - по форме; 1 - драчевый, 2 - личной, 3- бархатный, 4 - плоский, 5 - полукруглый, 6 - квадратный, 7 - трехгранный, 8- круглый

Напильники разделяются: по крупности насечки (номеру), по длине и форме (рис. 1).

В зависимости от назначения применяют напильники с насечкой различной крупности: драчевые (№1) с крупной насечкой, личные (№2) с более мелкой насечкой и бархатные (№ 3, 4, 5, и 6) с очень мелкой насечкой.

Драчевые напильники применяют для предварительной, черновой, грубой обработки; личные -для чистовой, отделочной обработки и бархатные - для окончательной, точной обработки.

Драчевыми напильниками за один рабочий ход, в зависимости от твердости металла, можно снять слой толщиной 0,05-0,1 мм с точностью обработки до 0,2-0,5 мм; личными - толщиной 0,02- 0,06 мм и с точностью обработки до 0,02 мм; бархатными можно обработать поверхность детали с точностью 0,01-0,005 мм.

Напильники имеют следующие части: нос - конец насеченной части напильника, тело - рабочая насеченная часть, пятка-не-насеченная часть тела напильника и хвостовик - часть напильника, на которую надевают ручку.

Напильники изготовляют длиной от 100 до 450 мм. Размер напильника следует выбирать соответственно величине обрабатываемой поверхности. Напильник должен быть на 150 мм длиннее опиливаемой поверхности.

В зависимости от вида обрабатываемых поверхностей изделий и от характера работ применяют напильники с профилем различной формы: плоские, полукруглые, квадратные, трехгранные и круглые. Плоские напильники используют для опиливания наружных и внутренних плоских поверхностей, наружных и внутренних криволинейных поверхностей выпуклой формы, плоских поверхностей, сквозных отверстий прямоугольной формы; полукруглые - для опиливания криволинейных поверхностей вогнутой формы, для выпиливания закруглений в углах; квадратные - для опиливания прорезей и отверстий прямоугольной формы; трехгранные - для выпиливания углов и отверстий треугольной формы; круглые - для выпиливания круглых и овальных отверстий.

Рис. 2. Пневматический напильник: 1 - рабочий инструмент, 2 - головка, 3 - преобразователь движения, 4 - редуктор, 5 - электродвигатель

На хвостовик напильника надевают деревянную ручку круглой формы с утолщением в середине. Ручки изготовляют из древесины твердых пород: березы, клена, бука. Поверхность ручки должна быть чистой и ровной. Чтобы ручка не раскололась при насадке на напильник и при работе, на конец ее надевают стальное кольцо.

Для повышения производительности труда при обработке металла применяют пневматические и электрические напильники.

Пневматический напильник (рис.2) состоит из рабочего инструмента, головки для его закрепления, преобразователя движения, редуктора и двигателя.

Длина хода напильника 12 мм, число двойных ходов в минуту 1500.



- Опиливание металла

Назначение, применение, последовательность вы-полнения операций. Опиливанием называется обработка поверх-ности изделия режущим инструментом - напильником, при помощи которого с обрабатываемого изделия снимается слой металла. Опиливание производится после операций рубки или резки для отделки поверхности обрабатываемого изделия и придания ему более точных размеров. В опытном или единич-ном производстве опиливание применяется также для пригон-ки деталей при сборке.

При выполнении сантехнических работ основными вида-ми опиловочных работ являются: опиливание наружных пло-ских и криволинейных поверхностей; опиливание наружных и внутренних углов, а также сложных или фасонных поверхно-стей; опиливание углублений и отверстий, пазов и выступов, пригонка их друг к другу.

Опиливание подразделяется на предварительное черновое и окончательное (чистовое и отделочное), выполняемое раз-личными напильниками. Напильник подбирают в зависимо-сти от заданной точности обработки и припуска, оставляемого на опиливание.

Инструменты и приспособления для опиливания. Напильники представляют собой режущие инструменты в виде стальных за-каленных брусков различного профиля с насеченными на ра-бочих поверхностях зубьями, которыми срезаются тонкие слои металла в виде стружки. Напильники бывают с различной дли-ной насеченной части. Насечку напильников выполняют оди-нарной (простой) и двойной (перекрестной). Напильники с одинарной насечкой, нанесенной под углом 70-80° к ребру на-пильника, срезают металл широкой стружкой, равной всей длине зуба, поэтому работа ими требует больших усилий. Такими напильниками опиливают мягкие металлы (медь, бронзу, латунь, баббит, алюминий). В напильниках с двойной насечкой одна насечка называется основной или нижней, а другая - верхней. Перекрестная насечка раздробляет стружку, что об-легчает работу слесаря. У напильников с перекрестной насеч-кой нижняя насечка обычно выполняется под углом 55°, а верхняя - под углом 70°. Шаг, т.е. расстояние между двумя со-седними зубьями, у нижней насечки больше, чем у верхней. В результате зубья располагаются друг за другом по прямой, со-ставляющей угол с осью напильника, и при движении напиль-ника следы зубьев частично перекрывают друг друга. Благода-ря этому на обрабатываемой поверхности не остается глубоких канавок, и она получается чистой и гладкой.

Зубья насекают на насекальных станках специальным зу-билом или получают фрезерованием, шлифованием, протяги-ванием. Каждый способ дает свой профиль зуба. Установлены следующие углы зубьев напильника:

  • для напильников с насеченными зубьями угол резания δ = 106°, задний угол α = 36°, угол заострения β = 70°, передний угол γ отрицательный - до 16°;
  • для напильников с фрезерованными и шлифованными зубья-ми δ = 80-88°, α = 20-25°, β = 60-63°, γ = 2-10°.

Напильники делятся на обыкновенные, специальные, рашпили и надфили.

К обыкновенным относятся напильники плоские (тупоно-сые и остроносые), квадратные, трехгранные, полукруглые и круглые.

К специальным напильникам относятся: ножовочные, ром-бические (мечевидные), плоские с овальными ребрами, оваль-ные, а также напильники-брусовки и др.; в виде круглых дис-ков с насечками, нанесенными по окружности и на боковых сторонах.

Рашпили - напильники с особым видом насечки - рашпильной. Подразделяются они на плоские тупоносые, плоские остроносые, полукруглые, круглые.

Надфили (мелкие напильники) делятся на плоские тупоно-сые, плоские остроносые, трехгранные, квадратные, полукруг-лые, круглые, овальные, ромбические, ножовочные.

По числу насечек, приходящихся на 1 см длины, напильни-ки делятся на шесть классов:

  • 1-й класс - напильники драчовые (крупная насечка), при-меняемые для грубого чернового опиливания;
  • 2-й класс - на-пильники личные (мелкая насечка), применяемые для чисто-вой обработки поверхностей;
  • 3-й, 4-й, 5-й и 6-й классы - на-пильники бархатные с мелкой и очень мелкой насечкой, применяемые для пригонки деталей.

Опиливание открытых и закрытых плоских поверхностей под прямым, острым и тупым углами. При опиливании изделие зажи-мают в тисках так, чтобы обрабатываемая поверхность высту-пала над губками тисковна высоту 5-10 мм. Зажим производят между нагубниками. При опиливании надо стоять перед тиска-ми слева или справа (смотря по надобности), повернувшись на 45° к оси тисков. Левую ногу выдвигают вперед в направлении движения напильника, правую ногу отставляют от левой на 20-30 см так, чтобы середина ее ступни находилась против пятки левой ноги. Напильник берут в правую руку за рукоятку, упирая ее головкой в ладонь; большой палец кладут на ручку вдоль, остальными пальцами поддерживают ручку снизу.

Положив напильник на обрабатываемый предмет, накла-дывают левую руку ладонью поперек напильника на расстоя-нии 20-30 мм от его конца. При этом пальцы должны быть по-лусогнуты, а не поджаты, чтобы их не поранить об острые края обрабатываемого изделия. Локоть левой руки приподнимают. Правая рука от локтя до кисти должна составлять с напильни-ком прямую линию. Напильник двигают обеими руками впе-ред (от себя) и назад (на себя) плавно на всю его длину. При движении напильника вперед на него нажимают руками, но не одинаково. По мере его продвижения вперед усиливают нажим правой руки и ослабляют нажим левой. При движении напиль-ника назад на него не нажимают. Рекомендуется делать от 40 до 60 двойных движений напильника в минуту.

При опиливании плоскостей напильник перемещают не только вперед, но и вправо или влево, чтобы спиливать равно-мерный слой металла со всей плоскости. Качество опиливания зависит от умения регулировать силу нажима на напильник, которое достигается только в процессе практических работ по опиливанию. При нажиме на напильник с постоянной силой в начале рабочего хода происходит его отклонение рукояткой вниз, а в конце рабочего хода - передним концом вниз. При та-кой работе края обрабатываемой поверхности будут находить-ся на разной высоте.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту