Советы по строительству и ремонту

Виды неисправностей аппаратуры . Неисправность РЭА проявляется в виде искажения выходной информа­ции или ее отсутствии при наличии входного сигнала. Источником неисправности могут быть один или несколько элементов, а также внешние воздействия и факторы - пыль, влага, и т. д. Каждый элемент РЭА оказывает влияние на формирование выходных параметров. Зави­симость между состояниями элементов РЭА и выходными параметрами носит неоднозначный характер. Большинство элементов влияет сразу на не­сколько параметров, а сами параметры могут зависеть от многих элементов.

Работу РЭА можно оценивать различными показателями:

Физическим состоянием элементов (оценивается внешним осмотром);

Качеством выдаваемой информации;

Формой и значением напряжений в различных точках (оцениваются по показаниям измерительных приборов).

Начинать поиск неисправностей необходимо с обнаружения сущест­венных противоречий в этих показателях. На определении этих противоре­чий основаны все методы поиска неисправностей. Следует иметь в виду, что ремонт РЭА может быть неоправданным, если аппаратура:

Морально устарела, для нее не выпускают запасные детали, а установка нетиповых деталей требует значительных затрат времени, дора­ботки конструкции и пр.;

Физически устарела, в ней заметно проявляются процессы старе­ния материалов, снижение диэлектрических показателей изолирующих мате­риалов, старение паек, высыхание оксидных конденсаторов и пр.;

Имела механические повреждения в результате удара, падения или подвергалась химическим воздействиям (попадание морской воды внутрь корпуса и др.).

Классификация дефектов РЭА . От характера дефектов во многом за­висят особенности их поиска. В первую очередь необходимо выяснить, имеется ли вообще неисправность, а не ошибка установки устройств регули­ровки, переключателей и т. п. Важно определить, к какому типу относится данный дефект.

Дефекты в РЭА, можно классифицировать по самым различным при­знакам, при этом разделение будет достаточно условным, так как сами признаки не могут иметь четких границ, а одна и та же неисправность может иметь сразу несколько признаков.

По сложности обнаружения различают дефекты: простые, когда дефект очевиден и легко устраним; несложные, когда дефект легко отыски­вается, однако устранение его затруднено; сложные, когда дефект непросто отыскать, но легко устра­нить (плохая пайка, контакт нарушается лишь с прогревом изде­лия); очень сложные, когда дефект трудно отыскать и устранить (случайные ме­жэлектродные замыкания).

По особенностям проявления различают дефекты: постоян­но проявляющиеся; непостоянные (время от времени без явных причин); проявляющиеся или пропадающие в процессе прогрева, при механических или других воздействиях; самоустраняющиеся.

По внешнему проявлению различают дефекты, связанные с отсутствием какого-либо параметра РЭА; с несоответствием какого-либо па­раметра норме; с появлением на выходе нежелательных сигналов.

По причинам возникновения дефекты бывают случайные или детерминированные, т. е. вполне определенные, которые можно было преду­смотреть. К детерминированным дефектам относятся:

Недостатки конструкции, заложенные при разработке: малона­дежные элементы; элементы, эксплуатирующиеся в режимах, близких к предельно допустимым; конструктивные решения, не обеспечивающие надежность контактных соединений, и т.п.

Нарушение технологической дисциплины при изготовлении РЭА (непропаи, качество монтажа и т. п.);

Нарушение условий эксплуатации: попадание внутрь РЭА влаги, пыли, насекомых, посторонних предметов; механические повреждения и т.п.

Неквалифицированное вмешательство в конструкцию РЭА: впаяны транзисторы другого типа, установлены дефектные элементы и пр.

Любой дефект, проявляющийся в РЭА, нарушает ее нормальную рабо­ту. Однако дефекты неравноценны, поэтому целесообразно установить по­следовательность их поиска и устранения, исходя из значимости.

Способы поиска неисправностей. Можно выделить три уровня поиска неисправностей и ремонта изделий: плата, ИС и схема в целом. На уровне плат заменяют подозрительную ПП. На уровне ИС опреде­ляют и заменяют дефектную ИС или компонент. На уровне схемы опреде­ляют точную причину неисправности. Проще всего заменить всю дефектную плату. Труднее всего точно найти и заменить де­фектную ИС.

Как правило, тщательный анализ симптомов позволяет определить возможную причину неисправности в одной или двух платах. Несмотря на дороговизну замены плат, для сокращения времени ре­монта во многих случаях пользуются этим способом.

Обычно неис­правность возникает только в одной ИС или поддерживающих компонентах. Наиболее сложным при ремонте оказывается поиск дефектной ИС или ком­понента. При тщательном изучении симптома (признака) неисправности опре­деляется подозрительная ИС. Каждая ИС выполняет конкретные функции. Эти функции могут быть простыми или сложными, но все они важны для работы изделия. Печатная плата с десятками ИС чрезвычайно сложна, но только из-за большого числа схем. Разобраться в каждой ИС не составляет труда. К счастью нет необходимости разбираться с работой элементов внутри ИС или БИС. Даже если определено, что не работает какой-либо разряд регистра, заключенного в БИС, то все равно необходимо заменить целиком всю БИС. Поэтому необходимо знать, какие сигналы должны по­ступать на входы ИС, что с ними происходит в ИС, и какие сигналы в ре­зультате работы должны появиться на выходе.

Все ИС на ПП расположены в определенном порядке. Для обслужива­ния на уровне ИС необходима диаграмма, показывающая неисправность, которая возникает при выходе той или иной ИС из строя. При неисправно­сти появляется симптом, и диаграмма показывает, какая ИС соответствует данному симптому. Когда из диаграммы известны подозрительные ИС, не­обходимо найти дефектную ИС.

Типичный поиск неисправности сложных систем происходит следующим образом. По определенной программе вы­полняются диагностические тесты микросхем с инициа­лизацией различных регистров ИС. Процессор заставляет дефектную ИС выполнять несложные действия. Если ИС не проходит тест, устанавливается флажок, и на экране появляется сообщение о неисправности. Для более полного понимания сути неисправности дополнительную информацию можно получить из блок-схемы изделия. Она позволяет перейти от чисто механического ремонта к логическому анализу неисправ­ности и выявить истинную причину отказа.

Схема размещения, блок-схема и принципиальная схема по­казывают одни и те же ИС. Схема размещения сообщает физическое располо­жение микросхем. Ее можно использовать для быстрых проверок. Блок-схема прида­ет смысл схеме размещения. Принципи­альные схемы детализирует блок-схему. Эти три схемы содержат всю необхо­димую информацию по обслуживанию. С их помощью можно поставить диаг­ноз, найти подозрительную ИС и провести измерения на ее контактах.

Ремонт и отладка плат . При ремонте электронного оборудования необходимо руково­дствоваться следующими принципами.

1. Любые действия, связанные с ремонтом электронного оборудова­ния, предваряются отключением питания.

2. Выводы о неисправностях должны делаться после того, как установлено, что все элементы коммутации и разъемы подключены пра­вильно и имеют контакт, а кабели не имеют обрывов.

3. Поскольку большинство электронных модулей построены на комплементарной МОП-технологии, критичных к стати­ческому пробою, перед доступом к узлам электроники следует снять с тела статический заряд, коснувшись технологического корпуса. Проводить рабо­ты по монтажу следует с установленным на руку браслетом съема статиче­ского электричества. Монтажные и наладочные работы не проводить в помещениях с полами, конденсирующими статический заряд, или увлажнять рабочее помещение.

4. В силу разрушительного действия переходных процессов временная задержка между отключением и последующим включе­нием питания должна составлять не менее 30 с.

5. При ремонте не следует обрывать нагрузку. Это создает повышенную мощность рассеивания на выходном активном элементе либо искажает картину снимаемых параметров.

Иллюзию неработающего источника часто создает чрезмерная нагруз­ка. Если возможно, следует посекционно отключать потребители (последовательное изъятие карт из слотов, с отключением блока питания). Замеры питающего на­пряжения лучше проводить на самих ИС или после переходных разъемов.

Для установки БИС используют панельки (chip sockets), установка и изъятие БИС из которых может проводиться специальными подъемниками - экстракторами. Техника выпаивания DIP-корпусов заключается в выкусывании ножек с последующим выпаиванием. Локальный перегрев монтажа паяльником в 30 Вт и выше может приводить к расслоению и обрывам дорожек, перегревам соседних элементов. В большинстве случаев удобен па­яльник 18 Вт с теплоотводом либо с газовым нагревателем. Нельзя пере­гревать элементы, но и не допускать «холодных» паек, проявляющих себя по истечении определенного времени. При работе со сквозным монтажом для одновременного прогрева всех ножек ИС и транзисторов применяют специальные насадки на паяльники.

При ремонте рекомендуется пользоваться сигнатурными логическими ана­лизаторами и интерфейсными тестерами. Существуют универсальные и специализированные приборы сервисного оборудования для ремонтных фирм с широким диапазоном функционального применения, позволяющие измерять параметры линий и модулей, скорость обмена и соотношение сиг­нал - помеха, проверять структуру форматов информационных сообщений. Сигнатурные анализаторы располагают собственной системой команд, кон­троллером и не­большой памятью. Подключают данные приборы либо через последовательный интерфейс (RS-232), либо через парал­лельный (IEEE-488, шина интер­фейса общего назначения). Один из вариантов диагностирования изделий - подключение ПК, обеспечивающего функции анализатора неисправностей в системе.

Приборы могут стыковаться с различными платами с помощью набора сты­ковочных элементов (драйверов-сенсоров), а также подключаться непо­средственно к элементам на плате с помощью группы клипсов и активных щупов. Для правильной настройки на конкретную плату электроники ис­пользуют базу данных, в которой находятся электрические и конструктивные параметры, топология, система питания и другие сведе­ния. Программные средст­ва являются разработками фирм-изготовителей тестеров.

Применяются также логические пульсаторы - устройства, предназначенные для формиро­вания импульсов различной длительности, которые вводятся в проверяемую схему, и логические щупы (пробники) устройства, предназначенные для ин­дикации логических уровней ИС. Кроме индикации единиц и нулей требуется индикация серий импульсов. Настройка на уровни и часто­ту следования проводится индивидуально для каждого типа плат.

Высокие требования к точности размеров детали, к отклонениям от геометрической формы и к шероховатости обрабатываемой поверхности выполнимы лишь при условии сохранения доводочными станками своей первоначальной точности. Погрешности отдельных механизмов, погрешности их взаимных перемещений регламентируются соответствующими стандартами. Знание взаимосвязи между неисправностями доводочных станков и погрешностями обработки позволяет быстро установить причину отклонений в технологическом процессе и восстановить необходимую точность обработки.

Неисправности шлифовальных станков. Анализ схем отделочного (прецизионного) наружного и внутреннего шлифования позволяет сделать вывод, что обрабатываемая поверхность может быть строго цилиндрической как в продольном, так и в поперечном сечениях лишь при определенных условиях: а) деталь и шлифовальный круг должны иметь постоянную ось вращения; б) оси вращения детали и круга должны быть параллельны в горизонтальной и вертикальной плоскостях; в) оси детали и круга в процессе резания должны сохранять параллельность направлению продольной подачи.

Нормы точности для шлифовальных станков прецизионного наружного и внутреннего шлифования очень высоки и позволяют длительное время получать детали с теми предельными отклонениями, которые указаны в паспорте станка. В связи с этим появление погрешности обработки следует рассматривать как нарушение технологического процесса в любой из его составных частей Определяющая роль в вопросах точности обработки, безусловно, принадлежит состоянию станка.

При смещении оси пиноли задней бабки в горизонтальной плоскости отклонение от цилиндричности возникает от изменения места заднего центра в связи с колебаниями длин деталей.

При внутреннем шлифовании погрешность обработки может быть вычислена по аналогичным формулам в зависимости от того, какие неисправности станка, технологической оснастки или шлифовальных кругов проявляются при обработке отверстий. Если при внутреннем шлифовании ось вращения детали по высоте не совпадает с осью вращения шлифовального круга, то отклонение от цилиндричности можно вычислить по формуле.

Достижение высокой точности при шлифовании отверстий - задача наиболее сложная из всех доводочных операций. Рассматривая схему технологического процесса внутреннего доводочного шлифования, нетрудно заметить дополнительные технические трудности, отрицательно сказывающиеся на точности обработки.

Особенности эти определяются тем, что шлифовальный круг должен быть меньше диаметра обрабатываемого отверстия. Если отверстие имеет значительную длину (два-три диаметра), инструмент крепят на оправке сравнительно малого диаметра при значительной длине. Даже незначительные силы резания вызывают упругое отжатие оправки с абразивным кругом, и ось вращения круга отклоняется от направления продольного перемещения шлифовального шпинделя. В связи с этим исключительное значение преобретает повышение жесткости шлифовальных шпинделей (включая оправку). Под жесткостью какого-либо механизма или станка следует понимать способность оказывать сопротивление перемещению детали, находящейся под действием силы. Жесткость шлифовального шпинделя круглошлифовальных станков составляет 20-30 кН/мм, оправка шлифовального шпинделя внутришлифовальных станков имеет жесткость в 100-200 раз меньшую.

При шлифовании отверстий малых диаметров и большой длины никакими техническими приемами существенно увеличить жесткость оправки не удается. В таких случаях для повышения точности обработки (для восстановления параллельности рабочей поверхности круга его продольному перемещению) прибегают к развороту шлифовального шпинделя в горизонтальной плоскости на угол, равный углу отжатия оправки при резании.

Второй серьезной технической сложностью достижения высокой точности внутреннего шлифования является низкая скорость резания вследствие малых диаметров абразивных кругов. Для достижения скорости резания 40-50 м/с, а в некоторых случаях и 30 м/с необходима частота вращения круга 100-200 тыс. об/мин. Это достигается применением электрошпинделей.

Диагностика станков с ЧПУ – комплекс действий, направленный на обследование и выявление неисправностей в конструкции оборудования, оснащенного числовым программным управлением. Система ЧПУ обеспечивает автономную и полуавтономную работу станочных приборов. Сбои в работе агрегата могут повлиять как на качество обработки на станках с ЧПУ, так и на способность исправно выполнять поставленную задачу.

Особенности

Диагностика станочного оборудования с ЧПУ включает группу работ, выполнением которой должны заниматься специалисты.

Произвести диагностику вне сервисного центра своими руками сложно, и имеется вероятность неточного определения причины поломки.

Диагностика делится на два этапа:

  • проверка состояния станка;
  • проверка системы числового программного управления.

Первый этап предполагает выявление неисправностей в конструкции самого прибора. Чаще всего неисправности связаны с поломками механического типа. В таком случае производится разбор конструкции, устранение и замена неисправного элемента.

Второй этап более сложный, поскольку требует исследования задач на числовом программном управлении. Для его осуществления требуется обследовать заданную программу, программоноситель, а также оборудование, отвечающее за выполняемые работы.

Если агрегат используется на промышленном предприятии, его обслуживание проводят специальные службы. Компании, которые занимаются производством оборудования этого типа, проводят курсы, обучающие, как использовать приборы, а также как определить их неисправность. При продаже агрегата вместе с ним следует руководство, в котором указана компания, занимавшаяся его изготовлением.

При необходимости в данную компанию можно обратиться с целью прохождения обучающего курса, или же получения консультации по интересующему вопросу. Наладчик должен уметь самостоятельно осуществлять диагностику аппарата.

Способы

Системы ЧПУ отличаются по структуре и функциям. Несмотря на это методика проверки оборудования предполагает наличие общих действий. При этом виде диагностики, выделяется три этапа, которые должен осуществлять оператор:

  • проверка работоспособности прибора;
  • наладка агрегата;
  • выполнение правил эксплуатации.

Проверка системы ЧПУ производится при помощи специальных тест-программ. При покупке заводских изделий они следуют в комплекте с прибором, и соответствуют его виду. Если используются микропроцессорные ЧПУ, тест-программы частично хранятся в памяти аппарата. В инструкции, которая следует в комплекте к станку, указывается и частота, с которой должна проводиться диагностика.

Тест-программа используется независимо от того, возникла неисправность, или нет.

Если же неисправность возникла, диагностика без нее не осуществляется. Основным признаком, который говорит о необходимости проведения диагностики, является неправильная обработка заготовок. Даже незначительные ошибки могут указывать на сбой. Тест-программа создана таким образом, чтобы после проверки оборудование вернулось в исходное состояние. Станки выполняют технологические команды, при которых записывается информация.

После окончания процедуры данные предоставляются оператору. Он сравнивает их со стандартными значениями, и определяет, какие из них не соответствуют норме. Наиболее частые погрешности, указывающие на наличие проблемы, связаны с частотой вращения шпинделя и сменой инструмента. Комплекс действий по выявлению неисправностей в работе агрегата, осуществляется тремя вариантами:

  • на станке;
  • с наличием стенда;
  • без станка и стенда.

Использование тест-программы соответствует первым видам действий. Этот этап является самым простым. Используя его, нет необходимости производить разбор оборудования. Достаточно произвести запуск программы. Диагностика с наличие стенда почти не отличается. Вместо станка используется графопостроитель. Если станок и стенд отсутствуют, наладчику придется использовать органы индикации.

Причины и ремонт

После выявления неисправностей применяются способы их устранения. В ходе осмотра и проверки на точность определяются данные, которые указывают, настройку какого элемента следует произвести. Независимо от этого осуществляется наладка и смазка деталей, которые подвергаются нагрузке. Смазка осуществляется при помощи использования специального масла. Регулировка и ремонт предполагают:

  • восстановление прямолинейности движения столов;
  • уменьшение интервалов салазок;
  • уменьшение интервалов столов.

Выполняется контроль силы натяжения ремней, цепей передачи, а также силы зажима крепежных деталей. Независимо от качества станка, после определенного периода использования начнут возникать неисправности в работе на станках.

Чаще всего аппарат с системами числового программного управления выходит из строя по вине:

  • неправильно отрегулированных узлов и рабочего механизма;
  • нарушения правил использования;
  • перегрузки оборудования;
  • неправильного ремонта устройства;
  • износа или получения механических повреждений.

Комплексная диагностика включает и разбор станка, и использование тест-программы. Рекомендуется использовать эти виды диагностики, поскольку причин поломки прибора может быть несколько.

Профилактика

Диагностика проводится не только с целью обнаружения причин поломки, но и профилактического обслуживания устройства с ЧПУ. Какие именно действия должны проводиться с профилактическими работами, и как часто их нужно осуществлять, указано в инструкции к аппарату. Цель профилактики и обслуживания станка заключается в поддержании рабочего состояния деталей станка, уходе за ними, и решении проблем на раннем этапе.

В ходе профилактики:

  • смазываются подвижные комплектующие фотосчитывающего прибора;
  • смазываются вентиляторы охлаждения;
  • конструкция оборудования очищается от пыли и загрязнений;
  • воздушные фильтры вентиляционной системы очищаются или заменяются на новые;
  • контакты и электронные блоки подвергаются чистке.

Если после профилактических действий возникли неисправности, требуется участие специалистов.

Дефекты — отклонения от предусмотренного техническими ус­ловиями качества материала по химическому составу, структуре, сплошности, состоянию поверхности, механическим и другим свойс­твам.

Дефекты, возникающие в процессе эксплуатации оборудования, можно разделить на три группы:

1) изнашивание, царапины, риски, на­диры;

2) механические повреждения (трещины, выкрашивание зубьев, поломки, изгибы, скручивания);

3) химико-тепловые повреждения (ко­робление, раковины, коррозия).

Большинство крупных и средних механических дефектов обна­руживают при внешнем осмотре. В некоторых случаях проверку осу­ществляют с помощью молотка: дребезжащий звук при отстукивании детали молотком свидетельствует о наличии в ней трещин. Для об­наружения мелких трещин можно использовать различные методы де­фектоскопии. Наиболее простые — капиллярные методы, позволяющие визуально определить наличие трещин. Более сложен метод магнит­ной дефектоскопии с продольным или ротационным намагничиванием. Дефекты, расположенные внутри материала, определяют рентгеноско­пическим или ультразвуковым методами. Ультразвук можно исполь­зовать и для обнаружения трещин.

Изнашивание (износ) — изменение размеров, формы, массы или состояния поверхности вследствие разрушения поверхностного слоя изделия. Различают следующие виды износа: допустимый, критичес­кий, предельный, преждевременный, естественный и многие другие, название которых определяется физико-химическими явлениями или характером распределения по поверхности детали.

Из всех возможных видов износов основными в станках явля­ются механический, при заедании и окислительный.

При механическом изнашивании происходит истирание (срезание) поверхностного слоя у совместно работающих деталей. Оно часто усугубляется на­личием абразивной пыли, твердых частиц, стружки, продуктов из­нашивания. При этом трущиеся поверхности дополнительно разруша­ются за счет царапин. Механическое изнашивание возникает при ну­левой и отличной от нее относительной скорости движения сопря­гаемых поверхностей, при наличии длительных нагрузок, больших удельных нагрузках и ряде других факторов. Правильные конструи­рование и обработка позволяют существенно уменьшить этот износ.

Изнашивание при заедании происходит в результате схватыва­ния одной поверхности с другой, глубинного вырывания материала. Происходит это при недостаточной смазке и значительном удельном давлении, когда начинают действовать молекулярные силы. Схваты­вание происходит также при высоких скоростях скольжения и высо­ком давлении, когда температура трущихся поверхностей высока.

Окислительное изнашивание проявляется у деталей станков, испытывающих непосредственное действие воды, воздуха, химических веществ и непосредственно температуры.

Об износе деталей и сборочных единиц можно судить по харак­теру их работы (например, шуму), качеству поверхности, форме и размеру обработанной детали.

Для уменьшения износа сопрягаемых поверхностей используется жидкостная смазка (в том числе и газовая), трение качения, маг­нитное поле и специальные антифрикционные накладки, прокладки и материалы.

Контроль за износом ответственных сопряжений станков необ­ходим для установления потребности в ремонте, для оценки качест­ва эксплуатации станка, для разработки мероприятий по повышению долговечности станка.

Измерение величины износа может производиться в процессе эксплуатации (специально при плановых осмотрах), в периоды плановых ре­монтов или при испытании станков.

Существуют разнообразные методы измерения износа, которые можно подразделить на следующие группы:

1) интегральные методы, когда можно определить лишь сум­марный износ по поверхности трения, не устанавливая величины из­носа в каждой точке поверхности, к ним можно отнести взвешивание, применение радиоактивных изотопов;

2) метод микрометража, основанный на измерении детали ми­крометром, индикаторными или другими приборами до и после изно­са; микрометраж, особенно измерение с помощью индикаторных при­боров, часто применяют при износе деталей станков в производ­ственных условиях; метод не всегда дает точное представление о форме изношенной поверхности;

3) метод "искусственных баз", используемый для оценки изно­са поверхностей трения базовых деталей станка; он заключается в том, что на изнашиваемые поверхности заранее наносят лунки опре­деленной формы, которые на изменение режима трения практически не оказывают влияния, поскольку их размеры малы; по первому спо­собу (способ отпечатков) лунки 2 на поверхность трения наносят­ся либо вдавливанием алмазной пирамиды 1 (рис. 8.4, а ), либо вра­щающимся твердосплавным роликом 3 (рис. 8.4, б ). Второй метод, ко­торый называют методом ”вытирания”, точнее из-за отсутствия вспу­ченного металла.

Рис. 8.4. Формы отпечатков

4) метод поверхностной активации, как и метод ”искусствен­ных баз”, используется в автоматических линиях из-за большого ко­личества контролируемого оборудования и ограниченного доступа к трущимся поверхностям; суть метода — рабочие участки направляющих, шпиндельных узлов, зубчатых и червячных передач, винтовых передач и других ответственных механизмов подвергают поверхност­ной активации в циклотронах пучком ускоренных заряженных частиц (протонов, дейтронов, альфа-частиц); глубина активированного слоя должна соответствовать предполагаемой величине линейного износа детали; для крупногабаритных деталей используют предва­рительно активированные специальные вставки. О величине износа активированных поверхностей судят, периодически измеряя энергию излучения.

Выбор метода зависит от цели данного испыта­ния и требуемой точности измерения. Допустимый износ направляющих станин токарно-винторезных и консольно-фрезерных станков нормируют в зависимости от требуе­мой точности обработки и размеров детали. Если износ направляю­щих превышает 0,2 мм, виброустойчивость станка значительно сни­жается, и, хотя по условиям обеспечения заданной точности дета­лей допустимо продолжение эксплуатации станка, приходится оста­навливать его на капитальный ремонт в связи с ухудшением качест­ва обработанной поверхности (следы вибрации) или с потерей про­изводительности.

Допустимый износ направляющих продольно-строгальных и про­дольно-фрезерных станков определяется по формуле

U max = d(L o / L 1) 2 ,

где d — погрешность обработки на станке (допуск на деталь); L o и L 1 — длина направляющих станины и обрабатываемой детали соответ­ственно.

Для плоских направляющих износ равен расстоянию от некото­рой условной прямой, проходящей через точки на неизношенных кон­цах направляющих, до изношенной поверхности.

Для станков с V-образными или треугольными направляющими с углом основания α допустимый износ

U max = dcos α (L o / L 1) 2 .

Износ направляющих станины в зависимости от режима работы станка и правильной эксплуатации составляет 0,04…0,10 мм и более в год.

Износ направляющих станины токарных и револьверных станков, работающих в условиях индивидуального и мелкосерийного производства, составляет в среднем около 30 % от величины износа направляющих станков, занятых в условиях крупносерийного и массового производства.

Основным следствием износа направляющих тяжелых станков, как, например, продольно-строгальных, продольно-фрезерных, расточных, карусельных и др., а также станков средних размеров с высокими скоростями движения по направляющим является контактное схватывание — заедание. Сопутствует ему по этой категории станков абразивное изнашивание.

Для проверки направляющих используются универсальные мостики. Их устанавливают на различные по форме и размерам направляющие станков. С по­мощью двух уровней одновременно проверяют прямолинейность и извернутость (т. е. отклонение от параллельности в горизонтальной плоскости) направ­ляющих, индикаторами определяют па­раллельность поверх­нос­тей.

Мостик располагают при­мерно в средней части (по длине) станины так, чтобы четыре опоры располагались на призма­тической части направляющих. Затем на верхней площадке закрепляют уровни с ценой деления 0,02 мм на 1000 мм длины и с помощью винтов регулируют по­ложение уровней так, чтобы пузырьки основной и вспомогательной ампул уров­ней располагались посередине между шкалами. Далее приспособление сдвигают вдоль направ­ляющих и возвращают на первоначальное место. При этом пу­зырьки основных ампул должны вернуться в исходное положение. Если это не произошло, необходимо проверить крепление колонок и подпятников.

Проверку направляющих осуществляют при остановке мостика после­до­вательно через участки, равные по длине рас­стоянию между опорами мостика. По уровню, установлен­ному вдоль направляющих, определяют непрямолинейность. Из­вернутость поверхностей определяют по уровню, расположенному перпендику­ляр­но направляющим.

Показания уровня в микрометрах, отсчитанные на отдельных участках, записывают в протокол и затем строят график формы направляющих.

На рис. 8.5, а приведен пример проверки направляющих треугольного профиля (часто встречающихся у станин токарно-револьверных станков). По индикатору 4 определяют параллельность левой направляющей базовой плоскости; по уровню 2, расположенному поперек направляющих, устанавливают их извернутость. Вторую сторону правой направляющей можно проверить по уровню, установив на этой стороне опору 3, или же, не пере­нося опоры, по индикатору (на рисунке это показано штриховой линией).

Рис. 8.5. Схемы проверки направляющих

На рис. 8.5, б показана установка приспособления на станине токарного станка для проверки индикатором 4 параллельности средних направляющих базовой поверхности, т. е. с плоскости под зубчатую рейку и проверки спиральной извернутости уровнем 2.

Для проверки станин шлифовальных и некоторых других станков со схожим сочетанием направляющих (рис. 8.5, в ) на прямолинейность и извернутость четыре опоры 1 рас­полагают между образующими направля­ющей V-образного профиля, а одну опору 3 — на противоположной плоской направляющей. Проверку ведут по уровню 2.

Когда размеры направляющих не позволяют поместить между их образующими все опоры приспособления (рис. 8.5, г ), то уста­навливают только две опоры 1.

На рис. 8.5, д опоры 1 раздвинуты в соответствии с размером приз­матической направляющей станины.

При проверке плоских направляющих станины (рис. 8.5, е ) две из опор 1 упирают в боковую поверх­ность, остальные две и опору 3 располагают на горизонтальных плоскостях. Таким образом обеспечиваются устойчивые показания уровня 2.

Универсальным мостиком, применяя различные держатели для крепления индикатора, можно контролировать параллельность оси ходового винта и направляющих станины токарного станка. Схема проверки параллельности оси винта координатно-расточного станка направляющим станины показана на рис. 8.6.

Рис. 8.6. Схема проверки параллельности оси винта координатно- расточного станка направляющим станины

Конструкция уни­версального мостика проста, поэтому настройка приспособления занимает не более 5 мин. С ней справляется слесарь средней квалификации.

Угловой мостик. Угловые мостики применяются для проверки направляющих, расположенных в разных плоскостях (на­пример, направляющие поверхности траверсыкоординатно-расточного станка модели КР-450).

На рис. 8.7 показана схема такого приспособления для измерения угловым мостиком.

Короткое плечо 3 рас­положено перпендикулярно удлиненному 5. Валик 1 закреплен не­под­вижно, а валик 4 можно сдвигать и устанавливать в зависи­мости от размера направляющей. При этом валики 1 и 4 раз­мещаются в V-образных направ­ляющих или охватывают по­верхности призматической направляющей. Опору 7 переуста­навливают вдоль паза плеча 5 и регулируют по высоте.

На плечо 3 вдоль направляющих уста­навливают регулируемую колодку 2 с уровнем и проверяют их прямолиней­ность. Извернутость проверяют при рас­положении уровня перпендикулярно на­правляющим. С помощью инди­ка­то­ров 6 определяют непараллельность поверхно­стей, а также непарал­лельность оси винта к направляющим.

Проверку параллельности направляю­щих формы “ласточкин хвост”, а также других форм удобно осуществлять с по­мощью специальных и универсальных при-способлений, оснащенных индикато­рами.

Направляющую можно проверить на параллельность индикаторными приспособ­лениями лишь после подготовки базовых. Представленное на рис. 8.8 приспособление применяется для проверки параллель­ности охватываемых и охватывающих направляющих различных форм и размеров с контактом по верхним или нижним поверх­ностям.

Рис. 8.8. Схемы проверки направляющих формы "ласточкин хвост"

Приспособление состоит из балки 3 с шарнирно скрепленным рычагом 1 и регулируемым измерительным стерж­нем 8, стойки 2 с индикатором и сменной шарнирной опоры 5 с контрольным валиком 6. Опору 5 можно установить под различ­ными углами и на любом участке планки 3 вдоль ее паза. Положе­ние опоры 5 фиксируют болтом 4.

При проверке направляющих формы «ласточкин хвост» с контактами по нижней плоскости подбирают сменную опору с диа­метром валика, обеспечивающим контакт примерно посередине высоты наклонной плоскости (рис. 8.8, а и в ). Опору 9 регулируют вдоль ее паза и также закрепляют болтом (на рисунке не показан). На цилиндрической поверхности измерительного стержня имеет­ся шкала, по которой определяют значение деления индикатора, зависящее от разности расстояний а и b (рис. 8.8, а ). При этом зна­чение одного деления шкалы индикатора составляет 0,005…0,015 мм, что необходимо учитывать при замерах.

Для восстановления деталей используются различные методы (табл. 8.1). При выборе метода восстановления необходимо назначать ремонтный, ремонтный свободный или ремонтный регламентированный размеры.

Таблица 8.1

Методы восстановления деталей

Название

метода восстановления

Характерные особенности

Обработка

резанием

Метод ремонтных размеров применяют для восстановления точности­ направляющих станков, изношенных от­верстий или шеек различных деталей, резьбы ходовых винтов и др. Из двух спряженных деталей восстанав­ливают и ремонтируют более дорогую, трудоемкую и ме­таллоемкую деталь, а заменяют более дешевую. Изно­шенные места деталей переводят после соответствую­щей обработки в следующий ремонтный размер. При вос­становлении стыков направляющих используют компен­саторы

наплавка

Сваркой исправляют детали с изломами, трещинами, сколами. Наплавка является разновидностью сварки и заключается в том, что на изношенный участок наплав­ляют присадочный материал более износостойкий, чем основной материал детали. После наплавки значительно повышается срок службы детали, которую можно использовать многократно, однако при этом процессе возможно ко­робление деталей. Для ремонта стальных деталей чаще применяют дуговую сварку металлическими электродами, используя те или иные методы в зависимости от хими­ческого состава стали. Газовую сварку используют для восстановления чугунных и стальных деталей толщиной менее 3 мм. Сварка серого чугуна может быть горячей, полугорячей и холодной

Сварка – пайка

Восстановление чугуна.


Используется латунная прово­лока и прутки из медно-цинковых оловянных сплавов

Ковкий чугун восстанавливают с применением латунных электродов или электродов из монель-металла (сплав никеля с медью, железом и марганцем)

Металли­зация

Металлизация заключается в расплавлении металла и распылении его струёй сжатого воздуха на мелкие час­тицы, которые внедряются в неровности поверхности, сцепляясь с ними. Металлизации подвергаются детали из различных материалов, работающих при спокойной нагрузке. Используются газовые или дуговые металлизаторы. Поверхность должна быть обезжиренной и шерохо­ватой

Хромиро­вание

Хромирование — процесс восстановления изношенной поверхности осаждением хрома электролитическим путем. Хромированные поверхности обладают повышенной твер­достью и износостойкостью, но плохо переносят дина­мические нагрузки. Хромирование менее универсально по сравнению с металлизацией из-за малой толщины, слож­ности покрытия деталей сложной конфигурации. Имеет неоспоримые преимущества перед другими методами вос­становления: частично изношенный слой хрома легко удаляется гальваническим путем (дехромированием), детали могут многократно восстанавливаться без из­менения размеров

Ремонтным называют размер, до которого обрабатывают изношен­ную поверхность при восстановлении детали. Свободный ремонтный размер — размер, величина которого не устанавливается заранее, а получается непосредственно в процессе обработки, когда будут уда­лены следы изнашивания и восстановлена форма детали. К получен­ному размеру подгоняют соответствующий размер сопряженной детали методом индивидуальной пригонки. При этом невозможно заранее из­готовить запасные части в окончательно обработанном виде. Регла­ментированный ремонтный размер — заранее установленный размер, до которого ведут обработку изношенной поверхности. При этом мож­но запасные детали изготавливать заранее, ремонт ускоряется.

Методы восстановления деталей при ремонте подробно рассмот­рены в технической литературе, некоторые из них приведены на схе­мах рис. 8.9. Применение того или иного метода ремонта диктуется техническими требованиями на деталь и обусловлено эко­номической целесообразностью, зависит от конкретных условий на производстве, от наличия необходимого оборудования и сроков ре­монта.

Большое распространение для восстановления деталей получили методы с применением полимерных материалов. Для этого требуется оборудование для литья под давлением, которое отличается про­стотой, и материалы типа полиамидов, обладающие достаточной адгезионной способностью к металлу и хорошими механическими свойствами.

В расточенной втулке (рис. 8.9, а ) делают радиальные от­верстия, затем втулку нагревают, помещают на столик пресса, поджимают к соплу (рис. 8.9, б ) и прессуют. Восстановленная втул­ка показана на рис. 8.9, в .

Для восстановления изношенной шейки вала (рис. 8.9, г ) ее предварительно протачивают (рис. 8.9, д ), а далее процесс по­вторяется, как и в предыдущем случае (рис. 8.9, е ).

Рис. 8.9. Схемы восстановления деталей станков

Восстановление будет качественным только при соблюдении ре­жимов литья и технологии процесса.

Винтовые передачи скольжения могут быть восстановлены с по­мощью самотвердеющих акрилопластов (стиракрил, бутакрил, этакрил и др.), состоящих из двух компонентов — порошка и жидкости-мономера. После смешивания порошка с жидкостью через 15…30 мин смесь затвердевает.

Сломанный вал (рис. 8.9, ж ) можно восстановить путем за­прессовки новой части 1 (рис. 8.9, з ) или методом сварки (рис. 8.9, м ) с последующим обтачиванием сварочного шва.

Изношенную резьбу в корпусной детали (рис. 8.9, к ) рассвер­ливают и развертывают, в полученное отверстие запрессовывают втулку, которую при необходимости фиксируют стопорным винтом 2 (рис. 8.9, л ). Аналогичным способом поступают при ремонте глад­ких отверстий.

Точную посадку по боковым сторонам изношенного шлицевого вала можно восстановить, если после отжига вала расширить шлицы ударами керна с последующей закалкой и шлифованием боковых сто­рон (рис. 8.9, м ).

Внутренний диаметр бронзовой втулки можно уменьшить с d 1 до d 2 путем осадки, т.е. уменьшить ее высоту при неизменном наруж­ном диаметре. Осадку производят под прессом (рис. 8.9, н ).

Технология восстановления винтовых передач скольжения мо­жет быть следующей. Восстанавливают постоянство шага ходового винта скольжения прорезкой резьбы. Резьбу в ходовой гайке сре­зают и растачивают до диаметра на 2…3 мм больше наружного диа­метра ходового винта. Растачиваемую поверхность по возможности делают ребристой. Отремонтированный ходовой винт нагревают до 90 °С и опускают в расплавленный парафин. После охлаждения на поверхности винта остается тонкая парафиновая пленка. Винт, по­крытый парафином, монтируют с расточенной гайкой, имитируя ра­бочее состояние передачи. Торцы гайки уплотняют пластилином. Затем в боковое, специально просверленное отверстие гайки шприцом заливают только что приготовленную смесь. Через несколько минут смесь затвердевает, и винт можно вывернуть из гайки.

Шариковые винтовые передачи ремонтируют, если износ резьбы винта более 0,04 мм. Технология восстановления следующая. Исправляют центровые отверстия винта шлифованием или притиркой. Если есть забоины и вмятины центровых отверстий, то растачивают и устанавливают на клею заглушки с центровыми отверстиями. Пос­ле восстановления центров, если необходимо, винт рихтуют по ин­дикатору в центрах. Затем механической обработкой восстанавли­вают точность шага резьбы. Во время обработки канавку резьбы расширяют по всей длине винта до ширины на наиболее изношенном участке. Наружный и внутренний диаметры резьбы остаются неизмен­ными. Осевой зазор выбирают регулированием гаек. Гайки чаще все­го не ремонтируют, а при необходимости меняют местами.

Исправление изношенных направляющих станин осуществляется следующими способами: 1) вручную; 2) на станках; 3) с помощью приспособлений.

Исправление вручную припиливанием и шабрением применяется для небольших по площади поверхности направляющих при малой величине износа. Шабрение направляющих станин может производиться двумя методами: 1) по контрольному инструменту; 2) по заранее отшабренной или прошлифованной сопряженной детали.

При величине износа направляющих станин, превышающем 0,5 мм, их ремонтируют обработкой на станках. Для этого используют специальные шлифовальные, продольно-строгальные и продольно-фрезерные станки.

При износе направляющих станин 0,3…0,5 мм на некоторых заводах их обрабатывают методом чистового строгания. Точность обработки таким методом позволяет почти полностью отказаться от шабренья и ограничиться только декоративным шабре-нием.

Шлифованием направляющие станин ремонтируют на специальных шлифовальных станках или продольно-строгальных или продольно-фрезерных станках со специальными стационарными приспособлениями.

Крупные станины, которые не могут быть обработаны на станках, должны обрабатываться с помощью приспособлений. Приспособления при их правильном использовании обеспечивают достаточно высокое качество обрабатываемых поверхностей. Обработка ведется без демонтажа станины, что сокращает сроки ремонта и снижает его стоимость. Переносные приспособления перемещаются, как правило, по станине, которую они обрабатывают. В качестве основания для приспособления (каретки) используется специально приготовленная плита или иногда деталь ремонтируемого станка.

Наибольшее распространение получили строгальные и шлифовальные приспособления.

Обработка с помощью приспособлений не требует специального оборудования. Недостатком метода являются меньшая производительность по сравнению с обработкой на станках и необходимость в ручной работе по подготовке баз. Достоинством обработки с помощью приспособлений является экономия времени на демонтаж, транспортирование и повторный монтаж станины, что неизбежно при обработке на станках.

Большое значение для восстановления направляющих имеет подбор технологических баз. По характеру баз станины могут быть разделены на четыре основные группы.

1) Станины, в которые вмонтированы шпиндели (станки горизонтально-фрезер-ные, вертикально-фрезерные с неотъемной головкой, некоторые типы зубодолбежных и др.). При ремонте станин этой группы выверки ведут от устанавливаемых в шпинделе станка оправок, материализующих ось вращения.

2) Станины, имеющие нерабочие поверхности, обработанные заодно с рабочими (станки продольно-фрезерные, продольно-строгальные, кругло- и внутришлифо-вальные).

3) Станины с частично изношенными направляющими. В качестве базы принимаются рабочие поверхности, изнашиваемые при эксплуатации мало и не на всем протяжении. У таких станин восстанавливают сначала малоизношенные поверхности, затем, базируясь от них, восстанавливают остальные изношенные рабочие поверхности. Типичными для этой группы являются станины токарных станков, револьверных станков с отъемной передней бабкой и др.

4) Станины, имеющие отдельные неизношенные участки направляющих. К этой группе относятся станины, не имеющие других обработанных поверхностей, кроме изнашиваемых рабочих (зубо- и резьбофрезерные станки). За базу принимают неизношенные или малоизношенные участки рабочих поверхностей, подлежащих исправлению.

Для восстановления требуемых свойств направляющих станин их подвергают термообработке. Из многообразия методов приведем несколько наиболее распространенных.

Поверхностная закалка с индукционным нагревом токами высокой частоты (ТВЧ) . Качество слоя чугуна, закаленного ТВЧ, зависит от частоты тока, удельной мощности, времени нагрева, конструкции индуктора, зазора между индуктором и закаливаемой поверхностью, а также от условий охлаждения. На конечные результаты закалки влияет также первоначальное состояние чугуна (его химический состав и микроструктура).

При нагреве серого чугуна с целью последующей закалки часть углерода растворяется в аустените, а остальная часть его остается в свободном состоянии в виде графитных включений. Как правило, перед закалкой чугун должен иметь перлитную структуру. Если исходная структура чугуна неудовлетворительна для поверхностной закалки, то следует увеличить концентрацию связанного углерода (повысить содержание перлита в структуре) путем предварительной термической обработки — нормали-зации.

Максимальная достигаемая твердость чугуна, получаемая после закалки ТВЧ при температуре 830…950 °С (в зависимости от состава чугуна), составляет HRC 48-53. Дальнейшее повышение температуры закалки приводит к понижению твердости.

Скорость охлаждения при закалке мало влияет на твердость. При закалке в масле твердость чугуна уменьшается только на 2 — 3 ед. HRC по сравнению с закалкой в воде.

Поверхностная закалка с нагревом ТВЧ модифицированного чугуна дает возможность получить большую твердость и глубину слоя по сравнению с закалкой обычного перлитного чугуна. По микроструктуре закаленный модифицированный чугун практически не отличается от перлитного.

Перед закалкой станин токарных станков необходимо выполнить следующее:

1) установить станину на стол продольно-строгального станка и выверить на параллельность базовым поверхностям с точностью 0,05 мм и затем прогнуть ее на 0,3…0,4 мм (величина деформации при закаливании);

2) строгать все направляющие станины до установления их параллельности ходу стола. После открепления станины (от стола) вследствие упругой деформации образуется выпуклость, соответствующая величине прогиба;

3) установить станину (без выверки) на закалочную площадку, окантованную цементным буртиком для сбора использованной закалочной воды;

4) на направляющих станины установить переносный станок, с двух сторон ее закрепить два кронштейна; роликовую цепь сцепить со звездочкой привода станка;

5) между индуктором и закаливаемой станиной с помощью вертикального и горизонтального суппорта станка отрегулировать зазор. Затем подать воду в индуктор;

6) включить ток и произвести закалку. Так как закаливаемая поверхность станины расположена в горизонтальной плоскости, охлаждающая вода заливает плоский, еще не полностью нагретый участок и тем самым затрудняет закалку. Как правило, глубина закаленного слоя у вершины призмы больше, чем на плоском участке (3…4 мм у призмы, 1,5…2,5 мм на плоском участке).

Пример. Режим закалки направляющих станины токарно-винторезного станка мод. 1К62.

Напряжение генератора, В ……….………………………………. 600-750

Сила тока, А………………………..…………………………………. 95-120

Емкость конденсаторной батареи, мкФ ….…………………….. 300-375

Используемая мощность, Вт ………………………………………. 55-70

Зазор между индуктором и закаливаемой станиной,мм ………..2,5-3,5

Скорость перемещения индуктора в процессе нагрева, м/мин….. 0-24

Температура нагрева поверхности станины, °С …………………850-900

Глубина закалки, мм …………………………………………………..3-4

НRC ……………………………………………………….…………. 45-53

Время закалки станины, мин………………………………….……. 60-70

Поводка станины после закалки (в сторону вогнутости), мм… 0,30-0,50

При закалке направляющие станины прогибаются, при этом компенсируется выпуклость, полученная при строгании. Таким образом, обеспечивается небольшой съем металла при последующем шлифовании направляющих.

Пламенная поверхностная закалка

Для поверхностного упрочнения направляющих станин пламенной закалкой в ремонтной практике применяются стационарные и передвижные установки. Первые обычно установлены на специальных участках ремонтно-механических цехов. В этом случае станины должны доставляться туда для термообработки и последующего восстановления. Для станин, которые по производственным причинам невозможно снять с фундамента (отсутствие подъемных средств и транспорта, необходимость сохранения фундамента и т. д.), применяются передвижные установки.

Пламенная поверхностная закалка направляющих станин может производиться ацетилено-кислородным или керосино-кислородным пламенем. Нагрев ацетилено-кислородным пламенем происходит интенсивнее, чем керосино-кислородным, так как при помощи первого можно нагревать до 3150 °С, а при помощи второго — лишь до 2400 °С. В качестве горючей смеси используют также пропан-бутан и кислород или природный газ в смеси с кислородом.

Закалочной средой служит вода. Установка для пламенной закалки проста в устройстве и надежна в работе, обслуживает ее один рабочий.

Закалка змейкой . На некоторых заводах вместо сплошной закалки направляющих станин токарных станков практикуется так называемая закалка змейкой, при которой путем нагрева газовой горелкой на поверхности направляющих образуются перекрещивающиеся зигзагообразные закаленные полосы.

В процессе закалки на направляющие поверхности станины наносится перекрещивающаяся зигзагообразная линия шириной 6…12 мм с шагом 40…100 мм (рис. 8.10).

Рис. 8.10. Закалочный рисунок змейкой

Закалочный рисунок выполняется от руки и обычно имеет неправильную форму. Расстояние от края станины до линии закалки должно быть не менее 6 мм. Скорость перемещения горелки вдоль направляющих около 0,5 м/мин, что обеспечивает нагрев до 750…800 °С.

Закалочный рисунок рекомендуется наносить так. Сначала следует нанести за один проход зигзагообразную линию на первой направляющей, после чего переходить ко второй направляющей. За время нанесения зигзагообразной линии на второй направляющей первая остывает до 50…60 °С, и на нее наносят перекрещивающуюся закалочную линию.

Поэтому необходимо внимательно следить за процессом нагрева и своевременно регулировать скорость перемещения горелки относительно закаливаемой поверхности направляющих станин, не допуская оплавления металла.

Микроволновые печи нового поколения [Устройство, диагностика неисправностей, ремонт] Кашкаров Андрей Петрович

2.6. Нахождение и устранение неисправностей

Ремонт включает работы, связанные с заменой компонентов, ремонтом узлов, блоков, деталей, устранением замыканий, восстановлением и настройкой аппарата. Отыскание неисправностей – наиболее трудоемкая операция ремонта, требующая хороших знаний, навыков и мастерства.

Технология ремонта складывается из четырех этапов: выявления неисправности, определения ее характера, устранения неисправности, проверки после ремонта. Отсюда найти неисправность – значит найти отказавший, вышедший из строя элемент, электронный узел, модуль, блок. Все это остается актуальным и до настоящего времени, несмотря на то что цифровые блоки стали делать в виде всего лишь одной «залитой» микросхемы.

Все неисправности проигрывателя компакт-дисков можно подразделить на механические и электрические. Механические неисправности возникают в механических узлах (к примеру, сервосистема отсчета времени (таймер СВЧ-печи или поворотный механизм системы гриля). Электрические неисправности возникают в электрических цепях и проявляются в виде изменения сопротивления, разрыва цепи, короткого замыкания в диодах, транзисторах, микросхемах, резисторах, конденсаторах, трансформаторах и др.

Среди способов поиска неисправностей необходимо выделить следующие. Внешний осмотр позволяет выявить большинство механических неисправностей, а также и некоторые электрические.

Внешним осмотром можно проверить качество сборки и монтажа. При проверке качества сборки вручную проверяют механическое крепление отдельных узлов.

Внешним осмотром проверяют также качество электрического монтажа: выявляют целостность соединительных проводников, отсутствие затеков припоя, которые могут привести к коротким замыканиям между отдельными участками схемы, обнаруживают провода с нарушенной изоляцией, проверяют качество пайки, а также наличие всех элементов согласно схеме. Внешним осмотром контролируют соответствие номиналов компонентов, выявляют дефекты отдельных элементов (обрыв выводов, обугливание поверхности резисторов, механические повреждения керамических конденсаторов и др.).

Внешний осмотр производят, как правило, при отключенном питании. При этом необходимо следить, чтобы в монтаж не попали случайные предметы, которые при включении аппарата могут вызвать короткое замыкание.

Внешним осмотром можно выявить неисправность почти всех радиоэлементов. Во включенном состоянии несложно определить и перегрев трансформатора питания накала магнетрона, электролитических конденсаторов, корпусов транзисторов и ИС. О наличии неисправностей в схеме аппарата могут свидетельствовать запахи от перегрева компонентов, изменение тона звуковых колебаний, вызываемых работой трансформаторов и других узлов схемы, которые вообще не слышны во время работы или имеют характерный тон звучания (повышенный звуковой фон при неисправности магнетрона – см. разделы 2.1–2.4).

Иногда во время внешнего осмотра возникают сомнения в исправности компонентов. В таком случае необходимо выпаять элемент и проверить его исправность более тщательно. Способ промежуточных измерений заключается в последовательной проверке прохождения сигнала от блока к блоку (от каскада к каскаду) до обнаружения неисправного участка. На выходе неисправного блока напряжение отсутствует.

Способ исключения состоит в последовательном исключении исправных каскадов, узлов и блоков в ходе отыскания неисправностей. Если блок исправен, его можно исключить из дальнейшего поиска неисправности и перейти к проверке высокочастотной части СВЧ-генератора.

Способ замены отдельных неисправных элементов, узлов или блоков на исправные широко используют при проверке и ремонте. К примеру, заменив блок, модуль на заведомо исправный, можно убедиться в неисправности замененного.

Способ сравнения заключается в сравнении параметров неисправного аппарата с параметрами исправного того же типа или марки.

Поиск неисправности осуществляют по определенному правилу (алгоритму), позволяющему максимально сократить время поиска.

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

Диагностирование неисправностей двигателя по состоянию свечей зажигания Загрязнение электродов и теплового конуса свечи Тонкий слой налета светло-серого или светло-коричневого цвета. Двигатель исправен. Свеча соответствует двигателю по тепловой характеристике.

Из книги Ремонт японского автомобиля автора Корниенко Сергей

Диагностика неисправностей рулевого управления и их устранение Повышенная передача но руль дорожных толчков при движении автомобиля. Вибрация и стуки, ощущаемые на рулевом колесе Диагностика элементов рулевого управления сводится к прослушиванию стуков при резких

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Коды неисправностей OBD-II

Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

Проверка неисправностей В данной простой схеме ошибки практически не встречаются. Если Светодиоды не включаются, то необходимо проверить полярность их включения. Если они включены с обратной полярностью, то они не будут

Из книги Советы автомеханика: техобслуживание, диагностика, ремонт автора Савосин Сергей

Логические схемы быстрого поиска и устранения неисправностей Ниже представлены логические схемы быстрого поиска и устранения неисправностей, выхода из неожиданных ситуаций, возможных при эксплуатации автомобиля.Условные

Из книги BIOS. Экспресс-курс автора Трасковский Антон Викторович

2.4. Неисправности и их устранение Прежде чем приступить к поиску возможной неисправности в двигателе, необходимо определить его вид: бензиновый или дизельный, карбюраторный или инжекторный. У инжекторного двигателя следует выяснить, какой системой впрыска топлива он

Из книги Гидроакумуляторы и расширительные баки автора Беликов Сергей Евгеньевич

3.3. Неисправности и их устранение Прежде чем приступить к устранению неисправности, необходимо определить ее источник. Рассмотрим наиболее часто встречающиеся неисправности:1. Недостаточно эффективное проворачивание стартером коленчатого вала двигателя, тусклый свет

Из книги Микроволновые печи нового поколения [Устройство, диагностика неисправностей, ремонт] автора Кашкаров Андрей Петрович

Часть III Диагностика и устранение сбоев и неполадок

Из книги автора

5.2. Основные неисправности и их устранение

Из книги автора

2.5. Метод поиска неисправностей в СВЧ-печи 2.5.1. Микросхемы Интегральные микросхемы очень широко используются в бытовых СВЧ-печах, снабженных цифровым блоком управления и индикаторным табло. Микросхемы, в том числе программируемые микропроцессоры, представляют собой



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту