Советы по строительству и ремонту

- представляет собой смесь двуосновной соли гипохлорита кальция, оксихлорида, хлорида и гидроокиси кальция. Применяется в качестве сильного окислителя в текстильной и бумажной промышленности для отбелки тканей и целлюлозы, в некоторых химических производствах для получения хлороформа, хлорпикрина, в качестве дегазационного и дезинфицирующего средства, для обеззараживания почвы около зернохранилищ от амбарных вредителей.

Получение.
В зависимости от способа получения известь хлорную выпускают двух марок: А и Б. Хлорную известь марки А получают хлорированием пушонки в кипящем слое, марки Б - хлорированием пушонки в аппаратах Бакмана.

Химическая формула: смесь Ca(ClO) 2 , CaCl 2 и Ca(OH) 2

Требования безопасности.
Известь хлорная не горюча, но, являясь сильным окислителем, при контакте с органическими продуктами может вызвать их загорание. Хлор, который выделяется из хлорной извести, относится к веществам 2-го класса опасности.

Упаковка.
Известь хлорную упаковывают в полиэтиленовые мешки; в пакеты развесом 0,5-2,0 кг из полиэтиленовой пленки или из поливинилхлоридной пленки, или из мешочной бумаги, ламинированной полиэтиленом; в полиэтиленовые мешки, вложенные в мешки из хлориновой ткани; в стальные барабаны вместимостью не более 100 дм3, окрашенные внутри и снаружи химически стойкой краской, или в неокрашенные барабаны из углеродистой стали, снабженные вкладышами из полиэтиленовой пленки.Известь хлорную для длительного хранения упаковывают в стальные барабаны, окрашенные внутри и снаружи, или в полиэтиленовые мешки, вложенные в мешки из хлориновой ткани.

Транспортировка, хранение.
Известь хлорную транспортируют всеми видами транспорта (кроме воздушного) в крытых транспортных средствах. Продукт, упакованный в полиэтиленовые мешки, транспортируют только повагонными отправками по железной дороге или автомобильным транспортом.
Известь хлорная, упакованная в полиэтиленовые мешки, должна быть выдержана в упаковке на складе предприятия-изготовителя в течение 72 ч на поддонах. При этом мешки укладывают на поддоны высотой до 1 м при ширине штабеля до 2 м, проход между штабелями - не менее 0,5 м.
Известь хлорную хранят в закрытых складских неотапливаемых, затемненных и хорошо проветриваемых помещениях. Полы должны быть из асфальта, кирпича или бетона. Известь хлорную в мешках хранят в штабелях высотой до 2,5 м и шириной до 1,2 м, в барабанах, ящиках и бочках - вертикально, высотой до пяти ярусов с перестилом из досок между ярусами или горизонтально высотой до 4 м. Между штабелями оставляют проход шириной не менее 1 м.
Не допускается хранение в одном помещении с известью хлорной взрывчатых веществ, огнеопасных грузов и баллонов со сжатыми газами.

Гарантийный срок хранения продукта.
продукта марки А 1-го и 2-го сортов - 3 года со дня изготовления, продукта марки А 3-го сорта и марки Б - 1 год со дня изготовления.

Физико-химические показатели хлорной извести:
* - допускается снижение массовой доли активного хлора в хлорной извести марки А 1-го и 2-го сортов в течение трех лет на 8%, марки А 3-го сорта и марки Б в течение одного года - на 10%.

Требования безопасности хлорной извести:

Степень токсичности 3
Основные свойства и виды опасности
Основные свойства Порошок белого цвета или слабоокрашенный, с наличием комков.
Взрыво- и пожароопасность Известь хлорная не горюча, но, являясь сильным окислителем, при контакте с органическими продуктами может вызвать их загорание. Взрывается при взаимодействии с нефтепродуктами, при ударе, трении. Емкости могут взрываться при нагревании.В случае разогрева вследствие разложения необходимо применять срочные меры к рассредоточиванию хлорной извести.Хранилища должны быть снабжены огнетушащими средствами: водой, ящиками с песком и углекислотными огнетушителями.
Опасность для человека Пыль хлорной извести и выделяющийся хлор (2-й класс опасности) оказывают раздражающее действие на слизистые оболочки дыхательных путей, а также на кожные покровы.Опасно при вдыхании, проглатывании, попадании на кожу и слизистые. Першение в горле, затрудненное дыхание, одышка. Боль в животе, рвота желчью, желтушность кожи. Болезненность, отек, изъязвление кожи. Слезоточение, спазм век.
Средства индивидуальной защиты Спецодежда, для защиты органов дыхания и зрения - фильтрующий противогаз марки В или БКФ. Респиратор РУ-60 м, РУ-62. Защитный костюм.
Необходимые действия в аварийных ситуациях
Общего характера Удалить посторонних. Держаться с наветренной стороны. Изолировать опасную зону в радиусе 800 м. В зону аварии входить в защитном костюме и дыхательном аппарате. Соблюдать меры пожарной безопасности. Не курить!
При утечке, разливе и россыпи Прекратить движение поездов и маневренные работы в опасной зоне. Горючие вещества удалить от рассыпанного вещества. Не ходить по просыпанному веществу.Поврежденные упаковки погрузить в вагон и вывезти на ближайшую станцию с соблюдением мер предосторожности.Просыпанное вещество собрать в емкость и вывести вместе с поврежденными упаковками. Место россыпи промыть большим количеством воды. В случае заражения воды сообщить в СЭС.
При пожаре Надеть полную защиту. Изолировать опасную зону в радиусе 800 м. Не приближаться к горящим емкостям. Тушить огонь тонкораспыленной водой, химической и воздушно-механической пеной. Охлаждать емкости с максимально возможного расстояния.
Нейтрализация
Меры первой помощи Доврачебная. Обеспечить свежий воздух, покой, тепло и вызвать врача. Смыть с кожи и слизистых остатки вещества. Пить молоко. Госпитализировать. При попадании на кожные покровы и в глаза их надо промыть струей воды в течение 15-20 минут.
Врачебная. Ингаляции содовые, масляные с новокаином 0,5%-нвм раствором, димедролом, преднизолоном 30-60 мг. Желудок промыть через зонд водой; п/к папаверин 2% 2,0, платифиллин 0,2% 1,0, атропин 0,1% 1,0, димедрол 1% 1,0. При угрозе отека легких - в/в преднизолон 120-200 мг, лазигс 60-100 мг.

ООО “Компани “Плазма”® осуществляет поставки химической продукции со склада в Харькове в сроки и по доступным ценам, на выгодных для Вас условиях.

Хлорная известь также еще называется белильной или гипохлоритом кальция. Хотя последнее название не совсем верно, т.к. данное вещество является сложной смесью и в его состав входит не только гипохлорит (Ca(ClO)2), но и оксихлорид (CaClO), хлорид (CaCl2), и гидроксид кальция (Ca(OH)2). Также в виде примеси может присутствовать (III), который придает желтоватую окраску. При нормальных условиях данное соединение имеет твердое сильный запах хлора и чаще всего белую окраску. В воде растворяется только гипохлорид кальция, при этом в атмосферу выделяется хлор, а остальное составляющие смеси образуют густой осадок - взвесь.

При попадании прямых солнечных лучей известь хлорная выделяет кислород, а при нагревании разлагается с выделением тепла, которое может привести к взрыву. В связи с этим данное вещество необходимо хранить в затемненных, прохладных (неотапливаемых) и проветриваемых помещениях. При работе с белильной известью необходимо использовать средства защиты для кожи, органов дыхания, особенно на предприятиях по ее производству и транспортировке.

С точки зрения химии, вещество хлорная известь, формула которого записывается CaCl(OCl), относится к смешанным т.е. содержит два аниона.

Также данное соединение является сильным окислителем, способным в щелочном растворе превращать MnO (оксид марганца (II))→MnO2 (оксид марганца(IV)); при взаимодействии с органическими веществами вызывать их возгорание. При взаимодействии с серной или соляной кислотами происходит выделение хлора: Ca(ClO)Cl + H2SO4→Cl2+CaSO4+H2O.

Данное вещество получают на производстве путем хлорирования При таком технологическом процессе получается хлорная известь трех сортов - 26, 32 и 35% активного хлора (количество чистого хлора, выделяемого при действии на данную смесь кислот HCl или H2SO4). Одним из недостатком данного вещества является то, что оно при хранении теряет активный хлор, в год на 5-10%. Бороться с этим стараются, выпуская продукт повышенной устойчивости, пропуская хлор в виде газа через суспензию Ca(OH)2. Активный хлор в соединении, полученном таким способом, составляет 45-70%. Также недостатком этого вещества является и то, что оно вызывает коррозию металла и разъедает Поэтому хранят его в деревянной таре, пластиковых емкостях или и пакетах.

Хлорная известь проявляет бактерицидные и спороцидные свойства, которые определяются наличием хлорноватистой кислоты и кислорода в растворе. За счет этого она активно используется при очистке сточных вод от различных нечистот и медицинскими учреждениями как дезинфицирующие средство (обрабатываются поверхности, места общего пользования). Также применяется как отбеливатель в производстве тканей, целлюлозы и бумаги.

Таким образом, хлорная известь - это сложная смесь, которая является химически довольно активным веществом и проявляет свойства сильного окислителя. В водных растворах гидролизуется, образуя хлорноватистую кислоту (НС1О). При повышении температуры(нагревании) и под действием солнечных лучей раскладывается, выделяя кислород и хлор.

ХЛОРНАЯ ИЗВЕСТЬ (Calcium hypochlorosum ; синоним: белильная известь, Calcaria chlorata, гипохлорит кальция, известь белильная термостойкая ) - химическое дезинфицирующее средство. Представляет собой смесь Ca(OCl) 2 , CaCl 2 , Ca(OH) 2 и кристаллизационной воды. В стабильной хлорной извести. примерно содержится: CaCl 2 -Ca(OH) 2 -H 2 O - 50%; Ca(OCl) 2 -2Ca(OH) 2 - 30%, CaCl 2 - 20%; влаги - не более 2%. В зависимости от марки хлорной извести в ней содержится 28; 32 или 35% активного хлора. Она представляет порошок белого цвета. При растворении хлорной извести в воде гипохлорит кальция Ca(OCl) 2 гидролизуется с образованием хлорноватистой кислоты, обладающей сильными окислительными свойствами, а нерастворимые соли находятся во взвешенном состоянии или выпадают в осадок при отстаивании.

Хлорная известь обладает бактерицидными, вирулицидными, фунгицидными, спороцидными и ларвицидными свойствами, поэтому ее используют в качестве дезинфицирующего и инсектицидного средства, а также для дегазации и отбеливания (например, целлюлозы, тканей). Для дезинфекции хлорную известь применяют в виде сухого порошка, хлорно-известкового молока (взвесь в воде), осветленных неактивированных и активированных р-ров (см. Дезинфицирующие средства). Сухой хлорной известью обеззараживают выделения (мокроту, мочу, фекалии, рвотные массы), почву. Хлорно-известковым молоком (10-20-40%) обеззараживают выделения, поверхности в нежилых помещениях путем побелки, дворовые уборные, товарные вагоны после перевозки животных. Осветленные растворы (получают после 24-часового отстаивания хлорно-известкового молока) используют для обеззараживания помещений, предметов обстановки, посуды, игрушек, уборочного инвентаря, воды. При кишечных и воздушно-капельных инфекциях применяют растворы хлорной извести, содержащие от 0,05 до 3% активного хлора, при туберкулезе и сибирской язве - 5% активного хлора. Осветленными 0,5-1% растворами (по препарату), активированными аммиаком или аммонийными солями, обеззараживают объекты при вирусном гепатите, энтеровирусных инфекциях, 2% растворами - при туберкулезе и 4% - при сибирской язве. Не рекомендуется использовать хлорную известь для обеззараживания белья и металлических изделий (см. Дезинфекция).

При попадании хлорной извести в организм человека через дыхательные пути появляется чиханье, насморк, першение в горле, головная боль, резь в глазах, слезотечение, чувство сжатия, боль и стеснение в груди, удушающий кашель, тошнота, рвота, общая слабость, иногда рефлекторное сужение голосовой щели. При попадании в глаза возникают слезотечение, покраснение слизистых оболочек, резь в глазах.

При проникновении хлорной извести. в организм через дыхательные пути необходимо удалить больного из помещения, в котором произошло отравление, снять с него одежду, адсорбировавшую хлор и стесняющую дыхание, дать вдыхать распыленный 2% раствор тиосульфата натрия, выпить молока с водой, из лекарственных веществ - кодеин, успокаивающие (настойка валерианы, бромиды), при сужении голосовой щели - атропин в каплях. При отсутствии эффекта показана госпитализация и проведение трахеотомии (см.). По показаниям назначают ингаляции кислорода, внутривенно - 10% раствор хлорида кальция, подкожно - камфору, кофеин. При попадании хлорной извести в глаза следует промыть их водой. При попадании хлорной извести в желудочно-кишечный тракт нужно промыть желудок теплой водой или 2% раствором тиосульфата натрия, а затем водой. Подкожно вводят рвотные средства (апоморфин), внутрь - солевое слабительное, белковую воду (2 яичных белка на стакан воды), 2% раствор гидрокарбоната натрия, молоко. Пострадавшему необходимо создать покой, тепло укутать.

С целью защиты органов дыхания, глаз и кожи от воздействия хлорной извести работать с ней следует в респираторе (см. Респираторы), резиновых перчатках, защитных очках (см.) и фартуке из прорезиненной ткани. Входить в помещение, обработанное хлорной известью, можно через 30-45 минут после проветривания.

Библиогр.: Вашков В. И. Дезинфекция, дезинсекция, дератизация, с. 61, М., 1956; Праве В.Е. Таблица противоядий и других средств первой помощи при острых отравлениях препаратами, применяемыми в медицинской дезинфекции, дезинсекции и в городской дератизации, с. 15, М., 1964; Фурман А. А. Хлорсодержащие окислительно-отбеливающие и дезинфицирующие вещества, с. 7, М., 1976.

Н. Ф. Соколова.

Получение:

Получают взаимодействием хлора с гашеной известью (гидроксидом кальция).

Химические свойства:

На воздухе хлорная известь медленно разлагается по схеме:

Термическое разложение

Применение :Широко используется для отбеливания и дезинфекции.

6. Кислородсодержащие кислоты галогенов. Изменение их силы и окислительной способности. Соли кислородсодержащих кислот. Применение.

7. Общая характеристика подгруппы кислорода.

Подгруппа кислорода, или халькогенов – 6-я группа периодической системы Д.И. Менделлева.

Сверху вниз, с нарастанием внешнего энергетического уровня закономерно изменяются физические и химические свойства халькогенов: радиус атома элементов увеличивается, энергия ионизации и сродства к электрону, а также электроотрицательность уменьшаются; уменьшаются неметаллические свойства, металлические увеличиваются (кислород, сера, селен, теллур – неметаллы), у полония имеется металлический блеск и электропроводимость. Водородные соединения халькогенов соответствуют формуле: H2R: H2О, H2S, H2Sе, H2Те – хальководороды.

8. Вода. Физические и химические свойства. Вода как растворитель. Биологическая роль воды.

Физические свойства: вода – бесцветная жидкость, без вкуса и запаха, плотность – 1 г/см3; температура замерзания – 0 °C (лед), кипения – 100 °C (пар). При 100 °C и нормальном давлении водородные связи рвутся и вода переходит в газообразное состояние – пар. У воды плохая тепло-и электропроводность, но хорошая растворимость.

Химические свойства: вода незначительно диссоциирует:

В присутствии воды идет гидролиз солей – разложение их водой с образованием слабого электролита:

Взаимодействует со многими основными оксидами, металлами:

С кислотными оксидами:

Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, у которых заряженные частицы (ионы) диссоцииируют в воде, когда вещество растворяется, а также некоторые неионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные (полярные) группы (-OH).

Биологическая роль воды:

Вода играет уникальную роль как вещество, определяющее возможность существования и саму жизнь всех существ на Земле. Она выполняет роль универсального растворителя, в котором происходят основные биохимические процессы живых организмов. Уникальность воды состоит в том, что она достаточно хорошо растворяет как органические, так и неорганические вещества, обеспечивая высокую скорость протекания химических реакций и в то же время - достаточную сложность образующихся комплексных соединений. Благодаря водородной связи, вода остаётся жидкой в широком диапазоне температур, причём именно в том, который широко представлен на планете Земля в настоящее время.

9. Сероводород, получение и свойства. Сероводородная кислота. 1-я и 2-я константы диссоциации. Роль в окислительно-восстановительных процессах. Соли сероводородной кислоты.

Получение: 1) прямой синтез из элементов, при температуре 600 °C; 2) воздействием на сульфиды натрия и железа соляной кислотой.

10. Серная кислота. Роль в окислительно-восстановительных процессах. Соли серной кислоты. Применение.

Оксид SO 2 и серная кислота проявляют только окислительные свойства, что обусловлено высшей степенью окисления серы (+6)

11. Соединения серы в степени окисления +4. Роль в окислительно-восстановительных процессах (примеры). Применение.

12. Общая характеристика подгруппы азота.

Могут проявлять в соединениях степени окисления от −3 до +5.

13. Аммиак. Получение, химические свойства, применение.

14. Азотная кислота. Химические свойства. Взаимодействие с металлами. Нитраты. Обнаружение.

Обнаружение:

В колбу, соединенную с холодильником, конец которого опускают в колбу с водой, помещают исследуемую жидкость и медные опилки. Колбу нагревают на бане с минеральным маслом или на песчаной бане и жидкость выпаривают почти досуха. При достаточной концентрации азотной кислоты происходит восстановление ее медью в окись азота, которая с кислородом воздуха образует двуокись азота (оранжевые пары). Последняя, растворяясь в воде, дает азотную и азотистую кислоты, которые и обнаруживаются химическими реакциями:

3Сu + 2HNO3 = ЗСuО + 2NO + Н2O

3СuО + 6HNO3 = 3Cu(NO3)2 + 3H2O

2NO + O2 = 2NO2; 2NO2 + H2O = HNO2 + HNO3

15. Азотистая кислота и ее соли. Роль в окислительно-восстановительных процессах. Применение.

HNO 2 . Соли азотистой кислоты (нитриты) получают восстановлением нитратов:

NaNO 2 +HCI = NaCI+HNO 2 .

Азотистая кислота проявляет как окислительные, так и восстановительные свойства. При действии более сильных окислителей (Н2О2, KMnO4) окисляется в HNO3:

2HNO 2 + 2HI → 2NO + I 2 ↓ + 2H 2 O;

5HNO 2 + 2HMnO 4 → 2Mn(NO 3) 2 + HNO 3 + 3H 2 O;

HNO 2 + Cl 2 + H 2 O → HNO 3 + 2HCl.

16. Биологическая роль азота и фосфора. Применение.

Азот входит в состав хлорофилла, гемоглобина и др.

Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Кости человека состоят из гидроксилапатита 3Са3(РО4)3·Ca(OH)2. В состав зубной эмали входит фторапатит.

17. Мышьяк и его соединения. Обнаружение. Влияние на живой организм. Применение.

Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство.

18. Общая характеристика элементов подгруппы углерода. Влияние на живой организм.

Применение.

Круговорот углерода в природе включает биологический цикл, выделение СО 2 (=> фотосинтез).

Соединения кремния относительно нетоксичны. Но очень опасно вдыхание высокодисперсных частиц как силикатов, так и диоксида кремния, попадая в лёгкие, кристаллизующихся в них, а возникающие кристаллики разрушают лёгочную ткань и вызывают тяжёлую болезнь - силикоз.

Малые количества германия не оказывают физиологического действия на растения, но токсичны в больших количествах. Германий нетоксичен для плесневых грибков.

Олово входит в состав желудочного фермента гастрина.

Свинец и его соединения токсичны. Попадая в организм, свинец накапливается в костях, вызывая их разрушение.

Широкого применения в медицине свинец не получил из-за своей высокой токсичности. Используется только Pb(CH 3 COO) 2 ·3H 2 O, или свинцовая вода, для примочек от ссадин

В настоящее время олово в медицине не используется.

19. Кислородсодержащие соединения углерода. Цианиды.

20. Кремний¸ строение атома. Важнейшие соединения, их свойства, применение.

21. Общая характеристика элементов III группы главной подгруппы. Применение.

22. Бор. Строение атома, валентность. Важнейшие соединения. Применение

B +5)2)3. Валентность равна 4.

23. Алюминий и его соединения. Применение.

При взаимодействии с сильными щелочами образуются соответствующие

алюминаты:

NaOH + Al(OH)3 = Na

С кислотами Al(OH)3 образует соли

Галогениды алюминия в обычных условиях - бесцветные кристаллические

вещества. В ряду галогенидов алюминия AlF3 сильно отличается по свойствам

от своих аналогов

Al2O3 + 6HF = 2AlF3 + 3H2O

Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма

реакционноспособны и хорошо растворимы не только в воде, но и во многих

органических растворителях

AlCl3, AlBr3 и AlI3 дымят во влажном воздухе (вследствие гидролиза

Широко применяется как конструкционный материал. Iироко используется в криогенной технике. Mатериалом для изготовления зеркал. В производстве строительных материалов как газообразующий агент. Aцетат алюминия (по крайней мере в 2003 году использовался) антисептик, оказывает вяжущее и местное противовоспалительное действие.

24. Общая характеристика элементов главной подгруппы II группы. Применение.

Главную подгруппу II группы Периодической системы элементов составляют бериллий Be, магний Mg, кальций Ca, стронций Sr, барий Ba и радий Ra.

Атомы этих элементов имеют на внешнем электронном уровне два s-электрона. В хим. реакциях атомы элементов подгруппы легко отдают оба электрона внешнего энергетического уровня и образуют соединения, в которых степень окисления элемента равна +2. Все элементы этой подгруппы относятся к металлам. Кальций, стронций, барий и радий называются щелочноземельными металлами.

Металлический бериллий применяется для изготовления окон к рентгеновским установкам, так как поглощает рентгеновские лучи в 17 раз слабее алюминия. Нитрат стронция применяют в пиротехнике, а его карбонат и оксид - в сахарной промышленности. Гидроксид и хлорид бария используются в лабораторной практике, пероксид бария - для получения пероксида водорода, нитрат и хлорат - в пиротехнике, сульфат бария - в рентгеноскопии органов пищеварения. Соединения бария ядовиты. Соли радия применяются в исследовательских целях, а также для получения радона, обладающего целебными свойствами.

25. Жесткость воды и способы ее устранения.

Жёсткость воды - свойство воды (не мылиться, давать накипь в паровых

котлах), связанное с содержанием растворимых в ней соединений кальция и

магния, это параметр, показывающий содержание катионов кальция, магния в

Существует два типа жесткости: временная и постоянная.

Чтобы избавиться от временной жесткости необходимо просто вскипятить

воду. При кипячении воды, гидрокарбонатные анионы вступают в реакцию с

катионами и образуют с ними очень мало растворимые карбонатные соли,

которые выпадают в осадок.

Ca2 + 2HCO3- = CaCO3v + H2O + CO2^

С последствием постоянной жесткости воды - накипью, с точки зрения химии бороться очень просто. Нужно на соль слабой кислоты воздействовать кислотой

более сильной. Последняя и занимает место угольной, которая, будучи

неустойчивой, разлагается на воду и углекислый газ. В состав накипи могут

входить и силикаты, и сульфаты, и фосфаты. Но если разрушить карбонатный

“скелет”, то и эти соединения не удержатся на поверхности.

26. Щелочные металлы. Изменение потенциала ионизации. Роль в окислительно-восстановительных процессах. Важнейшие соединения, биологическая роль, применение.

Это элементы 1-й группы периодической таблицы химических элементов: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs и франций Fr. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами..

Энергия ионизации - разновидность энергии связи или, как её иногда называют, первый ионизационный потенциал, представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическом (основном) состоянии на бесконечность.

Для всех щелочных металлов характерны восстановительные свойства.

Гидроксиды(Для получения гидроксидов щелочных металлов в основном используют электролитические методы), Карбонаты(Важным продуктом, содержащим щелочной металл, является сода Na2CO3. Основное количество соды во всём мире производят по методу Сольве, предложенному ещё в начале XX века. Суть метода состоит в следующем: водный раствор NaCl, к которому добавлен аммиак, насыщают углекислым газом при температуре 26 - 30 °C. При этом образуется малорастворимый гидрокарбонат натрия, называемый питьевой содой).

По содержанию в организме человека натрий (0,08%) и калий (0,23%) относятся к макроэлементам, остальные – литий (10 -4%), рубидий (10-5 %) и цезий (10-4%) – микроэлементам. Щелочные металлы в виде различных соединений входят в состав тканей животных и человека. Натрий и калий – жизненно необходимые элементы, постоянно содержатся в организме, участвуют в обмене веществ. Литий, рубидий, цезий – также постоянно содержатся в организме, однако физиологическая и биохимическая роль их мало выяснена.

Литий используется в специальных легких сплавах, литийорганические производные широко применяются при синтезе различных классов органических соединений. Натрий используется в металлотермии. Металлический натрий и его жидкий сплав с калием используется в органическом синтезе. Как восстановитель часто применяется амальгама натрия. Из тяжелых щелочных металлов техническое применение находит только цезий, который благодаря малому потенциалу ионизации используется для создания фоточувствительных слоев в вакуумных фотоэлементах.

27. Хром. Строение атома. Возможные степени окисления. Кислотно-основные свойства. Применение.

Cr +24)2)8)13)1

Для хрома характерны степени окисления +2, +3 и +6.

C увеличением степени окисления возрастают кислотные и окислительные свойства. Хром Производные Сr2+ - очень сильные восстановители. Ион Сr2+ образуется на первой стадии растворения Хрома в кислотах или при восстановлении Сr3+ в кислом растворе цинком. Гидрат закиси Сr(ОН)2 при обезвоживании переходит в Сr2О3. Соединения Сr3+ устойчивы на воздухе. Могут быть и восстановителями и окислителями. Сr3+ можно восстановить в кислом растворе цинком до Сr2+ или окислить в щелочном растворе до СrО42- бромом и других окислителями. Гидрооксид Сr(ОН)3 (вернее Сr2О3·nН2О) - амфотерное соединение, образующее соли с катионом Сr3+ или соли хромистой кислоты НСrО2 - хромиты (например, КСrО2, NaCrO2). Соединения Сr6+: хромовый ангидрид СrО3, хромовые кислоты и их соли, среди которых наиболее важны хроматы и дихроматы - сильные окислители.солей.

Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование). Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

28. Окислительно-восстановительные свойства соединений хрома с различной степенью окисления.

Хром химически малоактивен. В обычных условиях он реагирует только с фтором (из неметаллов), образуя смесь фторидов.

Хроматы и дихроматы

Хроматы образуются при взаимодействии СгО3, или растворов хромовых кислот со щелочами:

СгОз + 2NaOH = Na2CrO4 + Н2О

Дихроматы получаются при действии на хроматы кислот:

2 Na2Cr2O4 + H2SO4 = Na2Cr2O7 + Na2SO4 + Н2О

Для соединений хрома характерны окислительно - восстановительные реакции.

Соединения хрома (II) - сильные восстановители, они легкоокисляются

4(5гС12 + О2 + 4HCI = 4СгС1з + 2Н2О

Для соединений хрома (!!!) характерны восстановительные свойства. Под действием окислителей они переходят:

в хроматы - в щелочной среде,

в дихроматы - в кислой среде.

29. Амфотерность гидроксида хрома (III). Хромиты, их восстановительные свойства.

Cr(ОН)3. CrOH + HCl = CrCl + H2O, 3CrOH + 2NaOH = Cr3Na2O3 + 3H2O

Хроматы(III) (устар. назв. хромиты).

Для соединений хрома характерны восстановительные свойства. Под действием окислителей они переходят:

в хроматы - в щелочной среде,

в дихроматы - в кислой среде.

2Na3 [Сг(OH)6] + ЗВг2 + 4NaOH = 2Na2CrO4 + 6NaBr + 8Н2О

5Cr2(SO4)3 + 6KMnO4 + 11H2O = 3K2Cr2O7 + 2H2Cr2O7 + 6MnSO4 + 9H2SO4

Соли хромовых кислот в кислой среде - сильные окислители:

3Na2SO3 + К2Сг2О7 + 4H2SO4 = 3Na2SO4 + Cr2(SO4)3 + K2SO4 + 4H2O

30. Хромовая и дихромовая кислоты, их соли, роль в окислительно-восстановительных реакциях.

Хромовая кислота Н2CrO4, дихромовая кислота Н2Cr2О7

Соли - хроматы и дихроматы

Соединения хрома (III) в щелочной среде играют роль восстановителей. Под действием различных окислителей - Cl2, Br2, H2O2, КмnO4 и др. - они переходят в соединения хрома (IV) - хроматы

Сильные окислители, такие, как KMnO4, (NH4)2S2O8 в кислой среде переводят соединения Cr (III) в дихроматы:

Таким образом, окислительные свойства последовательно усиливаются с изменением степеней окисления в ряду: Cr2+ Cr3+ Cr6+ . Соединения Cr (II) - сильные восстановители, легко окисляются, превращаясь в соединения крома. (III). Соединения хрома (VI) - сильные окислители, легко восстанавливаются в соединения хрома (III). Соединения с промежуточной степенью окисления, т. е. соединения хрома (III), могут при взаимодействии с сильными восстановителями проявлять окислительные свойства, переходя в соединения хрома (II), а при взаимодействии с сильными окислителями (например, бромом, KMnO4) проявлять восстановительные свойства, превращаясь в соединения хрома (VI).

31. Марганец. Строение атома. Возможные степени окисления. Кислотно-основные свойства.

Схема строения атома: Mn +25)2)8)13)2.

Характерные степени окисления марганца: +2, +3, +4, +6, +7 (+1, +5 мало характерны)

-

32. Окислительно-восстановительные свойства соединений марганца в зависимости от степени окисления.

Марганец - элемент VIIB (7) группы имеет валентную конфигурацию 3d 54s 2. В соединениях

марганец проявляет степени окисления от 0 до +7, наиболее устойчивые из них +2, +4, +6 и +7.

Соединения марганца (II) в реакциях проявляют восстановительные свойства, и в кислой и в

щелочной среде:

2MnSO4 + 5PbO2 + 6HNO3 = HMnO4 + 3Pb(NO3)3 + 2PbSO4 + 2H2O

MnSO4 + H2O2 + 2NaOH = Mn(OH)4↓ + Na2SO4

Осадок MnS при стоянии на воздухе окисляется:

MnS + O2 + 2H2O = Mn(OH)4↓ + S↓

Соединения марганца (IV) могут выступать как в качестве окислителя, так и в качестве

восстановителя. Восстановительные свойства марганец (IV) проявляет, например, при

получении перманганата калия сплавлением бертолетовой соли с оксидом марганца (IV) и

3MnO2 + KClO3+ 6KOH = 3K2MnO4 + KCL + 3H2O

Примером окислительных свойств соединений марганца (IV) может служить реакция диоксида

марганца с сульфатом железа (II):

MnO2 + 2FeSO4 + 2H2SO4 = MnSO4 + Fe2(SO4)3 + 2H2O

Соединения марганца (VI) обладают окислительными свойствами, но при действии более

сильных окислителей могут выступать и в роли восстановителя:

K2MnO4 + Na2SO3 + H2SO4 = MnO2↓ + Na2SO4 + K2SO4+ H2O

2K2MnO4+ Cl2 = 2KMnO4 + 2KCl

Соединения марганца (VII), соли марганцевой кислоты, перманганаты, являются одними из

самых сильных окислителей. В зависимости от рН среды перманганат – ион восстанавливается

в разной степени:

Кислая среда: MnO4 + 8H + 5е→ Mn2 + 4H20

Нейтральная среда: MnO4 + 2H2O + 3е→ MnO2 + 4OH

Щелочная среда: MnO4 + 1е→ MnO42

33. Поведение перманганата калия в различных средах (примеры). Применение.

Является сильным окислителем. В зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде - до соединений марганца(II), в нейтральной - до соединений марганца(IV), в сильно щелочной - до соединений марганца(VI).

Примеры реакций приведены ниже (на примере взаимодействия с сульфитом калия:

в кислой среде: 2KMnO4 + 5K2SO3 + 3H2SO4 → 6K2SO4 + 2MnSO4 + 3H2O;

в нейтральной среде: 2KMnO4 + 3K2SO3 + H2O → 3K2SO4 + 2MnO2 + 2KOH;

в щелочной среде: 2KMnO4 + K2SO3 + 2KOH → K2SO4 + 2K2MnO4 + H2O;

Разбавленные растворы (около 0,1 %) перманганата калия нашли широчайшее применение в медицине как антисептическое средство, для полоскания горла, промывания ран, обработки ожогов. В качестве рвотного средства для приёма внутрь при некоторых отравлениях используют разбавленный раствор.

34. Общая характеристика триады железа. Роль в живом организме.

Элементы триады железа (железо, кобальт, никель) находятся в побочной подгруппе VIII группы. Атомы элементов триады железа имеют на внешнем энергетическом уровне по 2 электрона, которые они отдают в химических реакциях. В своих устойчивых соединениях эти элементы проявляют степени окисления +2, +3. Образуют оксиды состава RO и R2O3. Им соответствуют гидроксиды состава RОН)2 и R(ОН)3.

В обычном состоянии железо, кобальт, никель представляют собой тяжелые серебристо-белые металлы с высокими температурами. Все эти металлы обладают превосходными механическими свойствами.

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (окол, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Кобальт участвует в ферментативных процессах фиксации атмосферного азота клубеньковыми бактериями. В организме среднего человека (масса тела 70 кг) содержится около 14 мг кобальта.

Никель относится к числу микроэлементов, необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях.

35. Железо, строение атома, степени окисления. Изменение свойств соединений с изменением степени окисления железа. Роль в живом организме. Применение.

Схема строения атома: Fe +26)2)8)14)2.

Для железа характерны степени окисления железа - +2 и +3, реже - +6. (соответствующего оксида и гидроксида с свободном виде не существует). Ферраты - сильнейшие окислители.

Соединения железа (II)-восстановительные свойства. Соединения железа (III) проявляет амфотерные свойства.

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 78 % являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Железо - один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства. Железо может входить в состав сплавов на основе других металлов - например, никелевых. Уникальные ферромагнитные свойства ряда сплавов на основе железа способствовуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей. Десятиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве. Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.

БЕЛИЛЬНАЯ ИЗВЕСТЬ - продукт, получаемый действием газообразного хлора на гашеную известь. Белильная известь открыта Теиардом в 1798 году, когда он для приготовления жавелевой воды насыщал хлором известковое молоко вместо дорого стоящего раствора едкого натра. Он же впервые предложил действовать хлором на сухую гашеную известь, - этот способ добывания белильной извести употребляется и в настоящее время. Белильная известь поступает в продажу в виде белого сухого порошка, не имеющего строго определенного химического состава. Белильная известь широко применяется для беления хлопчатобумажных тканей и бумажной массы, для приготовления бумаги, а также находит применение в качестве сильно действующего дезинфекционного средства и, представляя собой аккумулятор активного хлора, употребляется при реакциях хлорирования, как, например, при приготовлении хлороформа. В настоящее время белильная известь получается (в случае применения для ее изготовления чистого хлора) в особых камерах, куда на цементированный пол насыпают сухой гидрат окиси кальция слоем в 8-10 см.

Камеру плотно закрывают и пускают туда газообразный хлор, который и реагирует с гашеной известью в присутствии определенного количества влаги. По окончании реакции камера хорошо проветривается, и готовую белильную известь насыпают тут же в бочки. Содержание влаги в гидрате окиси кальция должно составлять около 4%. В таких камерах нельзя работать разбавленным хлором, как, например, хлором, полученным по способу Дикона, и поэтому для использования хлора, содержащего инертные примеси, реакцию насыщения хлором гидрата окиси кальция производят в особых чугунных цилиндрах, расположенных один над другим так. обр., что известь переводят из одного цилиндра в другой по направлению сверху вниз. Передвижение гидрата окиси кальция в цилиндрах производится шнеками, которые, как и внутренняя поверхность чугунных цилиндров, покрыты хлороупорной эмалью. Направление хлора противоположно движению извести, а именно: хлор вводится в аппарат через нижний цилиндр и протягивается через всю систему высасыванием из верхнего цилиндра. Такой аппарат работает по принципу противотока, и поэтому позволяет пользоваться разбавленным хлором. Из нижнего цилиндра выходит готовый продукт, который насыпается в бочки. Система состоит обыкновенно из шести цилиндров, каждый длиной в 4 м.

При действии газообразного хлора на гидрат окиси кальция образуются гл. обр. продукты следующего химического состава:

в различных соотношениях.

Еще Балярд, который открыл хлорноватистую кислоту, в 1835 г. высказал мнение, что белильная известь есть соединение или смесь СаСl 2 и Са(ОСl) 2 . По работам Дитца, при действии хлора на гашеную известь при низкой температуре (при охлаждении) две молекулы гидрата окиси кальция реагируют с одной молекулой хлора с образованием сначала промежуточного продукта основного характера химической формулы:

Полученный свободный гидрат окиси кальция вступает в реакцию с газообразным хлором по первому уравнению. Если учесть сказанное обстоятельство, то можно подсчитать, что на 4 молекулы гидрата окиси кальция потребуются 3 молекулы хлора, что можно изобразить следующим уравнением:

Но если гидрат окиси кальция содержал при загрузке достаточное количество влаги, то освободившаяся вода вызовет диссоциацию основной соли с выделением гидрата окиси кальция. Тогда на 8 молекул Са(ОН), потребуется 7 молекул хлора, что выражается уравнением:

На основании приведенных рассуждений можно видеть, что по мере хода реакции получается белильная известь все более богатая содержанием хлора. Поэтому конечная реакция получения белильной извести может быть изображена следующей формулой:

где n = 1, 2, 2 2 , 2 3 и т. д. Если происходит полное насыщение по уравнению:

то белильная известь должна содержать 49% активного хлора. В действительности, работая в очень благоприятных условиях, можно получить продукт с содержанием 42-45% активного хлора.

Техническая белильная известь содержит обычно 35-36% активного хлора. По работам Неймана и Гаука, в чистой и свежей белильной извести не содержится свободного хлористого кальция, что видно и из того, что белильная известь не обнаруживает такой способности расплываться на воздухе, какая свойственна хлористому кальцию. Поэтому белильная известь является смешанной солью хлорноватистой и хлористоводородной кислот. Если взять для приготовления белильной извести химически чистые продукты, то, по Нейману и Гауку, получается продукт с содержанием 39% активного хлора соответственно следующей химической формуле:

Исследования Неймана и Гаука показали важность чистоты исходных продуктов для получения белильной извести; например, если известь плохо обожжена или хлор содержит углекислоту, то получается малостойкий продукт, быстро притягивающий влагу и с малым содержанием активного хлора.

Белильная известь сохраняется только в хорошо закрытых сосудах. На воздухе она притягивает углекислоту и выделяет свободный хлор. Совершенно сухая углекислота не действует на белильную известь, и для реакции требуется присутствие влаги. Если белильную известь держать на холоде и в темноте, то содержание активного хлора понижается на 1 / 4 - 1 / 2 % в месяц. Стойкость белильной извести повышается высушиванием ее при 100° под уменьшенным давлением в 50 мм. Примеси железа и марганца ускоряют разложение белильной извести с выделением активного хлора, кроме того портят внешний вид продукта. Окиси алюминия, магния и кремния не влияют на разложение белильной извести, но их присутствие увеличивает вес продукта, отчего уменьшается содержание активного хлора. Технический анализ белильной извести заключается в определении количества активного хлора титрованием мышьяковистокислым натрием (раствор Пено), причем конец реакции определяется йодокрахмальной бумагой. Анализ надлежит вести слабыми растворами и возможно скорее, чтобы не произошли потери хлора. Раствор Пено приготовляется растворением мышьяковистого ангидрида в растворе двууглекислой соды и определением титра по йоду. Расчет ведется по уравнению

На некоторых фабриках определяют крепость растворов белильной извести по их плотности, измеряемой по Боме, что дает лишь относительные числа и пригодно лишь для белильной извести с одним и тем же постоянным содержанием действующего хлора. Сорта белильной извести с различным содержанием действующего хлора по этому способу несравнимы, т. к. если в растворе содержится хлористый кальций или известь, то эти вещества увеличивают плотность растворов, но не содержат действующего хлора. Для белильной извести с содержанием в 35% действующего Cl соотношение между плотностью растворов по Боме и количеством действующего Сl в л раствора таково:



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту