Советы по строительству и ремонту

Углеродистые стали содержат в своем составе углерод до 2,14%, марганец (до 0,8%), кремний (до 0,35%), серу (до 0,06%) и фосфор (до 0,07%). Перечисленные элементы всегда присутствуют в стали, и поэтому их классифицируют как постоянные примеси . Марганец и кремний вводят в стали с целью раскисления, присутствие серы и фосфора объясняется трудностью удаления их при выплавке.

Кремний растворяется в феррите и сильно упрочняет его, снижая при этом пластичность и значительно повышая предел текучести. При этом уменьшается способность стали к вытяжке и холодной высадке. Поэтому в сталях, предназначенных для холодной штамповки, содержание кремния должно быть сниженным.

Марганец повышает прочность феррита и уменьшает красноломкость стали, которую вызывает сера. С железом сера образует сульфид FeS, который практически не растворяется в железе и образует с ним эвтектику (Fe + FeS), плавящуюся при температуре 988°С. При кристаллизации эта эвтектика размещается вокруг зерен в виде оторочек. Во время горячей обработки при нагреве выше 1000°С эвтектика плавится, что приводит к нарушению связи между зернами и в металле при деформации возникают надрывы и трещины. Это явление называется красноломкостью стали. При наличии марганца в стали вместо сульфида железа образуется сульфид марганца MnS с температурой плавления 1620°С, благодаря чему устраняется явление красноломкости.

Соединения серы снижают механические свойства, особенно ударную вязкость и пластичность, резко снижают работу развития вязкой трещины и вязкость разрушения К 1С . Сульфиды ухудшают свариваемость и коррозийную стойкость.

Фосфор в малых количествах растворяется в железе, образуя твердый раствор. Растворяясь в феррите, фосфор уменьшает его пластичность и вязкость и резко повышает порог хладноломкости стали. Каждая 0,01% фосфора повышает переходную температуру хладноломкости на 20...25 о С. При повышенном содержании фосфор с железом образует фосфиды Fe 3 Р и Fe 2 P, которые в составе эвтектики размещаются по границам зерен и снижают прочность стали.

Существуют в сталях так называемые скрытые примеси, к которым относят кислород 0,002...0,008%), азот (0,002...0,007%), водород (0,0001...0,0007%). Эти примеси могут находиться в стали в виде хрупких неметаллических включений (FeO, Al 2 O 3 , Fe 4 N) или твердого раствора, а также быть в свободном виде в дефектных участках металла (трещинах, раковинах и др.). При плавлении они растворяются в стали, а затем выделяются при охлаждении, главным образом, по границам зерен, что снижает сопротивление хрупкому разрушению. Кроме того, неметаллические включения есть концентраторами напряжений. Наличие водорода становится причиной возникновения в легированных сталях флокенов (микронесплошностей металла диаметром до 10…15 мм в центральной части поковки).

Неметаллические включения являются хрупкими и во время прокатки разбиваются, располагаясь в стали в виде цепочек. При этом образуются микроскопические концентраторы напряжений, что снижает характеристики усталости и ударную вязкость.

Некоторые примеси попадают в сталь при выплавке из скрапа и называются случайными . К таким примесям относятся хром, никель, медь при наличии до 0,3%. Влияние их в таком количестве на свойства сталей незначительно.

Наибольшее влияние на свойства стали имеет углерод. На рисунке 6 приведены кривые зависимости прочности и пластичности стали от содержания в ней углерода. Видно, что углерод очень резко повышает свойства прочности при одновременном снижении пластичности и вязкости. Это объясняется тем, что цементитные включения тормозят передвижение дислокаций в феррите и, естественно, при увеличении количества повышается их влияние.

При увеличении количества углерода переходная температура хладноломкости стали резко повышается. Каждая 0,1% С повышает на 20 о С температуру перехода от вязкого к хрупкому разрушению.

Углерод влияет также и на другие физические свойства стали, в частности, с повышением количества углерода увеличивается электросопротивление и коэрцитивная сила, а магнитная проницаемость уменьшается.

Углеродистые стали подразделяются по способу производства в зависимости от используемых плавильных агрегатов на конверторную, мартеновскую и электросталь. При этом по способу раскисления сталь может быть кипящей (раскислена только марганцем), полуспокойной (раскислена марганцем и кремнием) и спокойной (раскислена марганцем, кремнием и алюминием).

Рисунок 6 - Зависимость механических свойств стали (а) и

фазового состава (б) от содержания углерода

1.4.2.1 Классификация и маркировка углеродистых сталей

По структуре в равновесном состоянии различают доэвтектоидные, эвтектоидные и заэвтектоидные стали. Доэвтектоидные стали содержат углерода от 0,025 до 0,8%, их структура состоит из феррита и перлита. Содержание углерода в эвтектоидной стали составляет 0,8% С при полностью перлитной структуре. В заэвтектоидных сталях наряду с перлитной составляющей образуются цементитные включения, а содержание углерода может изменяться от 0,8 до 2,14%.

Наиболее распространена классификация углеродистых сталей по качеству, которое определяется содержанием серы и фосфора, В соответствии с этим признаком стали бывают обыкновенного качества, качественные и высококачественные.

Углеродистые стали обыкновенного качества (табл. 1) маркируются буквами Ст , что означает сталь. После Ст следует условный номер марки от 0 до 6, который отображает химический состав стали. Степень раскисления стали указывается буквами кп, пс, сп , которые означают, соответственно, кипящую (раскисленную марганцем), полуспокойную (раскисленную марганцем и кремнием), спокойную (раскисленную марганцем, кремнием и алюминием). Массовая доля серы в сталях всех марок £ 0,050%, фосфора – £ 0,040%, в Ст0 серы – £0,060%, фосфора – £ 0,070%.

Достаточно часто встречается еще маркировка прошлых лет, в соответствии с которой все стали обыкновенного качества подразделяются на три группы.

Группа А – маркируются Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6.

Группа Б – маркируются буквами М, К, Б (что указывает на способ производства – мартеновский, конверторный, бессемеровский), а затем Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6.

Группа В – маркируются ВСт1, ВСт2, ВСт3, ВСт4, ВСт5, ВСт6.

Стали группы А поставляются с гарантированными механическими свойствами. Они не поддаются горячей обработке. Чем больше номер, тем выше прочность, но ниже пластичность стали.

Стали группы Б поставляются с гарантированным химическим составом и у потребителя могут подвергаться горячей обработке (например, ковке и термической обработке).

Стали группы В поставляются с гарантированными механическими свойствами и химическим составом (применяются для сварных конструкций).

Таблица 1 - Химический состав углеродистых сталей обыкновенного

качества

Стали всех групп с номерами марок 1, 2, 3, 4 по степени раскисления изготавливают кипящими, полуспокойными, спокойными, а стали с номерами 5 и 6 – полуспокойными и спокойными.

Углеродистые качественные стали отличаются от сталей обыкновенного качества меньшим содержанием серы (не более 0,04%) и фосфора (не более 0,035%), а также меньшим количеством неметаллических включений. Химический состав этих сталей ограничивается более узким диапазоном. Качественные углеродистые стали маркируются словом сталь и последующим двузначным числом, которое показывает среднее содержание углерода в стали в сотых долях процента, например, 08, 10, 15 и т.д. (табл. 2).

Таблица 2 - Состав и механические свойства качественных углеродистых сталей

Марка стали С, % Mn,% Si, % Cr, % s 0,2 , МПа s в, МПа δ,% y, % KCU, Дж/см 2
0,05-0,12 0,35-0,65 0,17-0,37 0,10 -
0,07-0,14 0,35-0,65 0,17-0,37 0,15 -
0,12-0,19 0,35-0,65 0,17-0,37 0,25 -
0,17-0,24 0,35-0,65 0,17-0,37 0,25 -
0,22-0,30 0,50-0,80 0,17-0,37 0,25
0,27-0,35 0,50-0,80 0,17-0,37 0,5
0,32-0,40 0,50-0,80 0,17-0,37 0,25
0,37-0,45 0,50-0,80 0,17-0,37 0,25
0,42-0,50 0,50-0,80 0,17-0,37 0,25
0,47-0,55 0,50-0,80 0,17-0,37 0,25
0,52-0,60 0,50-0,80 0,17-0,37 0,25 -
0,57-0,65 0,50-0,80 0,17-0,37 0,25 -

При обозначении кипящей или полуспокойной стали в конце марки указывается степень раскисления буквами кп, пс . В случае спокойной стали степень раскисления не указывается. К качественным углеродистым сталям относятся также стали с повышенным содержанием марганца (0,7 - 1,0%). Такие стали имеют в конце марки букву Г .

Для изделий ответственного назначения применяют высококачественные стали с более низким содержанием серы (до 0,025%) и фосфора (до 0,025%). При обозначении высококачественных сталей в конце марки добавляется буква А.

Качественные углеродистые стали подразделяются на низко-, средне- и высокоуглеродистые в зависимости от содержания углерода. К низкоуглеродистым сталям высокой пластичности и малой прочности относятся стали 08, 08кп, 10, 10кп, 15, 15Г..., 25Г, которые используются для изготовления малонагруженных деталей (кулачковых валов, осей, втулок). Термическая обработка (закалка с отпуском, цементация) значительно повышает прочность и вязкость изделий из этих материалов, что позволяет создавать более легкие конструкции и экономить металл. Среднеуглеродистые стали (с содержанием углерода 0,3...0,55%) в зависимости от требуемых механических свойств используются после нормализации, закалки с высокотемпературным отпуском, закалки ТВЧ и низкотемпературного отпуска. Из этих сталей изготовляют валы, шестерни, шатуны, шпиндели и т.д.

Высокоуглеродистые стали содержат углерода от 0,6 до 0,85% и характеризуются высокими прочностными и упругими свойствами, повышенной износостойкостью. После закалки и отпуска или закалки с нагревом ТВЧ детали из этих сталей могут работать в условиях трения при наличии высоких статических и вибрационных нагрузок. Из этих сталей изготавливают канатную проволоку, а также пружинную проволоку после патентования.

Углеродистые стали, которые содержат 0,7...1,3%С, используются для изготовления ударного и режущего инструмента. Их маркируют У7...У13 , где У обозначает углеродистую сталь, а цифра – содержание углерода в десятых долях процента.

К положительным качествам углеродистых сталей относится их достаточно высокий комплекс механических свойств, который обеспечивается проведением термической обработки. Углеродистые стали имеют хорошие технологические свойства. Они недефицитны и дешевы.

Основным недостатком углеродистых сталей является их низкая прокаливаемость (до 15 мм).

Чугуны

1.4.3.1 Общие сведения

Чугунами называют сплавы железа с углеродом, количество которого превышает 2,14%. Значительная часть выплавляемого чугуна переплавляется в сталь, однако не менее чем 20% выплавляемого чугуна используют для изготовления литых деталей.

Чугуны отличаются высокими литейными свойствами и являются одними из основных современных литейных материалов. Около 75% всех отливок изготавливают из чугуна. Более низкая по сравнению со сталями температура плавления и завершение кристаллизации при постоянной температуре (образование эвтектики) обеспечивают более высокие литейные характеристики: жидкотекучесть и заполняемость формы, усадку и меньшую склонность к образованию усадочных трещин.

Из-за низкой пластичности чугуны не подвергаются обработке давлением.

В зависимости от химического состава и условий кристаллизации углерод в чугунах может находиться в химически связанном состоянии в виде цементита или в свободном состоянии в виде графита. В соответствии с этим различают белые чугуны (углерод находится в виде цементита) и серые (углерод находится в виде графитных включений).

В белых чугунах фазовые превращения происходят в соответствии с диаграммой Fe-Fe 3 C. В зависимости от содержания углерода они подразделяются на доэвтектические (2,14…4,3%С), эвтектические (4,3%С) и заэвтектические (4,3…6,67%С).

В доэвтектических чугунах структурными составляющими при комнатной температуре являются перлит, ледебурит и цементит; в эвтектических – ледебурит; в заэвтектических – ледебурит и цементит.

Белые чугуны имеют высокую твердость (450…550НВ и выше), обусловленную наличием в них большого количества цементита. Одновременно с высокой твердостью для белых чугунов характерна высокая хрупкость, что исключает их использование для изготовления деталей машин. Находят применение отливки из белых чугунов, которые служат для получения деталей из ковкого чугуна путем проведения графитизирующего отжига. Также находят применение отливки с поверхностным слоем (12…30 мм) из белого чугуна и сердцевиной из серого чугуна. Наличие «отбеленного» поверхностного слоя обеспечивает высокую изностойкость такой отливки.

Промышленное значение имеют серые чугуны, в которых углерод находится в виде графитных включений, и поэтому важное значение приобретают условия их образования, т. е. процесс графитизации.

Графит содержит 100% углерода, а концентрация углерода в цементите составляет всего 6,67%. Кристаллические структуры аустенита и графита существенно различаются, в то время, как кристаллические структуры аустенита и цементита более подобны по своему строению. Поэтому образование цементита из жидкой фазы и из аустенита должно протекать легче, чем графита, поскольку работа образования зародыша и необходимые для этого диффузионные процессы не столь значительны.

Однако смесь феррит + графит или аустенит + графит обладает меньшой свободной энергией, чем смесь феррит + цементит или аустенит + цементит , следовательно, термодинамические факторы способствуют образованию не цементита, а графита.

В силу перечисленных обстоятельств при быстром охлаждении и затруднении диффузионных процессов происходит образование цементита, а при медленном охлаждении определяющим является стремление к минимизации свободной энергии, что приводит к образованию графита.

Серые чугуны различаются по форме графитных включений. Графит, который образуется в чугунах в процессе кристаллизации и последующего охлаждения имеет пластинчатую форму, а чугуны с таким графитом называются собственно серыми .

Образование графита вследствие распада цементита имеет место не только при кристаллизации и охлаждении, но и при нагреве белого чугуна до высоких температур. Это явление используется при производстве так называемого ковкого чугуна. В этом случае центры графитизации растут более или менее равномерно во все стороны и образуются графитные включения хлопьевидной формы. Чугун с таким графитом называют ковким чугуном.

Чугун с шаровидной формой графита, которую получают вследствие модификации магнием и церием, называют высокопрочным чугуном.

Чугуны, так же как и стали, являются многокомпонентными сплавами, в состав которых входят Fe, C, Si, Mn, P и S.

Углерод оказывает определяющее значение на качество чугунов, изменяя литейные свойства и количество графитных включений. Чем выше его концентрация, тем больше выделений графита и ниже механические свойства чугуна, поэтому содержание углерода в промышленных чугунах не превышает 3,8%. Нижний предел содержания углерода составляет 2,4% и лимитируется необходимостью обеспечения достаточных литейных свойств.

Кремний обладает сильным графитизирующим действием, он способствует выделению графита в процессе затвердевания и разложению уже образовавшегося цементита. Содержание кремния в чугунах колеблется от 0,3 до 5%.

Марганец затрудняет протекание процессов графитизации и незначительно улучшает механические свойства чугунов. Количество марганца в чугунах может изменяться в пределах 0,5…1%.

Сера по своей отбеливающей способности в 5 - 6 раз превосходит марганец. Кроме этого, сера снижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин. Поэтому сера является вредной примесью и её содержание в чугунах не превышает 0,15%.

Фосфор практически не влияет на графитизацию. Его предельная растворимость в феррите составляет 0,3%. При большем содержании фосфор образует с железом и углеродом тройную фосфидную эвтектику с температурой плавления 950 о С, что увеличивает жидкотекучесть чугунов. Однако эта эвтектика имеет высокую твердость и хрупкость, поэтому повышенное содержание фосфора в отливках до 0,7% допускается лишь при необходимости обеспечения высокой изностойкости. Для художественного литья используются чугуны с содержанием фосфора до 1%.

Из легирующих элементов степень графитизации увеличивают никель и медь, а хром затрудняет процесс образования графита.

Графитные включения влияют на механические свойства отливок, поскольку могут рассматриваться как пустоты соответствующей формы, возле которых концентрируются напряжения. Величина этих напряжений тем больше, чем острее дефект, поэтому в наибольшей мере разупрочняется металл при наличии графитных включений пластинчатой формы, менее опасной является хлопьевидная форма графита, а наиболее приемлемой – шаровидная форма графита. Наибольшее влияние графитные включения оказывают на сопротивление материалов разрушению при жестких способах нагрузки (ударных и растягивающих) и практически не влияют при действии сжимающих нагрузок. Наименьшую пластичность имеют чугуны с пластинчатым графитом (δ = 0,2...0,5%), промежуточную (δ = 5...10%) – с хлопьевидным графитом и наибольшую – с шаровидным графитом (δ £ 15%).

По структуре металлической основы серые, ковкие и высокопрочные чугуны подразделяются на ферритные, ферритно-перлитные и перлитные.

Металлическая основа в чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру. Присутствие в структуре феррита, не увеличивая пластичность и вязкость чугуна, снижает его прочность и износостойкость. Наименьшей прочностью обладает серый ферритный чугун.

Как конструкционный материал чугуны обладают следующими положительными свойствами. Наличие графита улучшает обработку резанием, поскольку стружка ломается на графитных включениях. По сравнению со сталью чугуны имеют лучшие антифрикционные свойства, в силу того, что графитные включения сами являются смазкой. Чугун прекрасно гасит вибрации и имеет повышенную циклическую вязкость благодаря микропустотам, которые заполнены графитом. Детали из чугуна не столь чувствительны к внешним концентраторам напряжений (выточкам, отверстиям и т. п.) по сравнению со стальными деталями. Чугуны дешевле сталей из-за более простой технологии производства.

В наше время просто невозможно представить себе деятельность человека без использования продукции металлургической отрасли. Различные металлы и сплавы буквально заполонили нашу жизнь. Не стала исключением и сталь углеродистая, которая нашла свое активное применение практически во всех отраслях и сферах народного хозяйства. О ее свойствах, назначении и составе пойдет речь в данной статье.

Определение

Итак, в первую очередь укажем, что сталь углеродистая – сплав железа с углеродом. При этом содержание последнего элемента должно быть не более 2,14% . Отдельно стоит рассмотреть классификацию. Такая сталь может быть разделена по:

  • структуре;
  • способу получения;
  • степени раскисления;
  • качеству;
  • назначению.

Обо всем этом будет сказано ниже.

Структура сплава

Сталь углеродистая бывает:

  • доэвтектоидная (содержание углерода составляет менее 0,8%);
  • эвтектоидная (углерод имеет концентрацию 0,8%);
  • заэвтектоидная (углерода более 0,8%).

Такая градация позволяет определять свойства углеродистой стали.

Способы производства

Абсолютно любая сталь изначально в своей основе имеет чугун, который впоследствии перерабатывают по особой технологии. Сталь углеродистая может быть создана тремя основными методами:

  • конверторной плавкой;
  • мартеновской плавкой;
  • электротермической обработкой.

Получение стали в конвертере происходит благодаря продуванию расплавленного чугуна кислородом под давлением. Сам по себе конвертер – печь грушевидной формы, футерованная изнутри специальным огнеупорным кирпичом. В зависимости от того, какая кладка (динас SiO 2 или доломитная масса CaO и MgO) находится внутри конвертера, идет разделение этого способа на бессемеровский и томасовский.

Приготовление стали в мартеновской печи сводится к выжиганию углерода из чугуна кислородом, находящимся не только в воздухе, но и в оксидах железа, которые попадают в печь в виде металлолома и железной руды.

Мартеновский способ, в отличие от конверторного, предусматривает регулирование химического состава готового продукта на выходе путем внедрения металлических компонентов в требуемой пропорции. К сожалению, несмотря на свои достоинства, мартеновский способ получения стали сегодня уже неактуален по причине своей технологической отсталости и слишком большого количества вредных выбросов в окружающую среду.

В электротермических печах производится сталь самого высокого качества. Это возможно благодаря тому, что воздух в печь извне практически не поступает. За счет этого вредоносный монооксид железа почти не образуется, а именно он снижает свойства стали и загрязняет ее. Кроме того, температура в печи не опускается ниже 1650 °C, что, в свою очередь, позволяет удалять нежелательные примеси в виде фосфора и серы.

Шихта для таких печей бывает различной: чугун может преобладать по количеству, но иногда большую часть составляет металлический лом. Также есть возможность легирования стали очень тугоплавкими материалами – вольфрамом и молибденом. Пожалуй, единственным существенным недостатком такого метода производства стали можно считать его энергоемкость, поскольку на одну тонну выплавляемой массы может приходиться до 800 кВт/ч.

Химические компоненты

Состав углеродистой стали стоит рассмотреть более детально. Первоочередно укажем на углерод. Именно этот элемент оказывает прямое влияние на прочность и твердость стали: чем его больше, тем выше названные характеристики, пластичность же при этом снижается.

Марганец и кремний не являются теми составляющими, которые оказывают существенное влияние на свойства стали. В процессе плавки они вводятся с целью раскиления.

Крайне вредной примесью считается сера. Из-за нее сталь становится ломкой во время ее обработки давлением с предварительным подогревом. Также сера снижает прочность, стойкость к износу и коррозии.

Фосфор приводит к возникновению хладноломкости – хрупкости при низких температурах.

Феррит привносит в сталь мягкую и пластичную микроструктуру. Его антиподом является цементит – карбид железа, наращивающий твердость.

Виды термической обработки

Углеродистые стали, применение которых возможно почти везде, где человек осуществляет свою жизнедеятельность, способны существенно изменять свои механические свойства. Для этого следует выполнить термическую обработку, смысл которой заключается в изменении структуры стали во время нагрева, выдержке и последующем охлаждении на основании специального режима.

Существуют такие виды температурной обработки:

  • Отжиг – снижает твердость и измельчает зерна, повышает обрабатываемость, вязкость и пластичность, снижает внутренние напряжения, устраняет структурные неоднородности.
  • Нормализация – исправляет структуру перегретой и литой стали, устраняет сетку вторичного цементита в заэвтектоидной стали.
  • Закалка – позволяет получить высочайшую твердость и прочность.
  • Отпуск.

Дифференциация по назначению

Сталь углеродистая делится на две большие группы:

  • инструментальная;
  • конструкционная (выделяют обыкновенные, качественные и автоматные разновидности).

Обыкновенные стали маркируются буквами "Ст" и номером от 0 до 6. Все стали с номером марки от 1 до 4 производят кипящими, полуспокойными и спокойными. Номера 5 и 6 могут быть только спокойными или полуспокойными. Кроме того, эти стали делятся на три большие группы: А, Б, В.

  • Группа А. Чем выше номер в маркировке стали, тем больше прочность.
  • Группа Б. С увеличением номера повышается содержание углерода.
  • Группа В. Механические свойства соответствуют группе А, химический состав – группе Б аналогичного номера.

Наиболее часто в строительстве применяются типы Ст1 и Ст2. Именно эти марки задействованы при создании резервуаров, трубопроводов, колонн. Ст3 и Ст 4 актуальны для возведения конструкций, а также из них производится арматура для железобетона. Углеродистая сталь ГОСТ 380-2005 является основой для листового, круглого, двутаврового и швеллерного проката.

Качественные стали характеризуются дешевизной и качественностью. Маркируют их следующим образом: от 08 до 85 с приставкой в конце "ПС" (полуспокойная), "СП" (спокойная), "КП" (кипящая). Цифра показывают концентрацию углерода в сотых долях процента.

Инструментальные стали применяют для изготовления трех основных групп инструмента: режущего, измерительного, штампованного. Цифры в маркировке сигнализируют о содержании углерода в десятых долях процента.

Химикотермическое воздействие

Углеродистые и легированные стали могут быть подвержены специальным видам обработки.

Одним из них является цементация – процесс, представляющий собой диффузионное насыщение поверхностного слоя стали углеродом при нагреве в соответствующей среде. Конечной целью операции является получение высокой поверхностной твердости и износостойкости при вязкой сердцевине. Цементация также может происходить в твердом карбюрюзаторе, который является смесью древесного угля и углекислых солей.

Азотирование стали – процесс, заключающийся в диффузионном насыщении поверхностного слоя стали азотом. Данную процедуру проводят в атмосфере аммиака при температуре в пределах 500-700 градусов Цельсия. Азотирование проводят для получения поверхности детали, устойчивой к износу и коррозии и обладающей большой твердостью.

Борирование – верхний слой стали насыщают бором. Делается это для повышения износостойкости, жаростойкости и твердости.

Также для получения жаростойких поверхностей применяют алитирование – насыщение стали алюминием.

Легированные марки углеродистой стали

Эта большая группа делится на конструкционные, инструментальные и стали с особыми качествами. Первые применяются для изготовления зубчатых колес, втулок, шпилек и деталей, работающих в крайне сложных напряженных условиях. Кроме того, в эту группу входят пружинно-рессорные и шарикоподшипниковые стали.

Из инструментальных сталей производят режущий и измерительный инструмент.

Особые качества описанного материала проявляются в его окалино- и жаростойкости. Сюда же можно причислить и нержавеющие марки.

Заключение

Как вы уже, очевидно, поняли из всего вышесказанного, один из самых востребованных на сегодня материалов – углеродистая сталь (назначение ее имеет широкий спектр). Она является относительно недорогой основой для создания многих машин, механизмов, деталей, конструкций, зданий, сооружений и вообще многого из того, что нас с вами окружает. Мировыми лидерами по производству стали сейчас называют Китай, Японию, Германию, США. Именно эти страны задают тон в металлургии на планете.

Углеродистой сталью называется инструментальная или конструкционная сталь, не содержащая легирующих добавок. Углеродистая сталь подразделяется на низкоуглеродистую (до 0,25% углерода), среднеуглеродистую (от 0,25 до 0,6% углерода) и высокоуглеродистую (до 2% углерода).

От обычных сталей углеродистую сталь отличает меньшее содержание примесей, небольшое содержание кремния, магния и марганца.

Углеродистая сталь отличается повышенной прочностью и высокой твердостью.

По качеству различают углеродистую сталь обыкновенную и качественную конструкционную.

Углеродистая сталь обыкновенного качества бывает холоднокатаная (тонколистовая) и горячекатаная (фасонная, сортовая, тонколистовая, толстолистовая, широкополосная). Она выпускается следующих марок: Ст1кп, СтО, Ст1пс, Ст2кп и т.д. Индексы в маркировке расшифровываются так: кп кипящая, пс полуспокойная.

Качественная конструкционная сталь - это кованные и горячекатаные заготовки толщиной до 250 мм, серебрянка (круглые прутки со специальной поверхностью) и калиброванная сталь. Она выпускается следующих марок: 05кп, 08кп, 08пс, 08, 10кп, 10пс, 10, 11кп, 15пс и т.д. Цифры в маркировке обозначают процентное содержание углерода (в сотых долях процента). Качественная конструкционная сталь используется для изготовления ответственных деталей механизмов и машин, штамповки.

Качественная сталь имеет в составе не более 0,03 % фосфора и серы, высококачественная не более 0, 02%.

Углеродистая сталь бывает разного назначения: предназначенная для статически нагруженного инструмента и для ударных нагрузок.

Для изготовления режущего инструмента с высокой твердостью, не испытывающего ударов (хирургический инструмент, напильники, шаберы, плашки, сверла, измерительные инструменты) используются стали У10?У13. Такие стали, подвергающиеся всем видам термообработки и содержащие хром, используются также для производства токарных резцов.

Для изготовления инструмента, подвергающегося ударным нагрузкам (топоры, пилы, деревообрабатывающие инструменты, зубила, клейма по металлу, отвертки) используются стали У7-У9. Они также подвергаются любому способу термообработки.

Вы можете заказать и купить углеродистую сталь, оформив заказ на нашем сайте.

Углеродистая сталь востребована разнообразными предприятиями, из нее изготавливают детали для машиностроения, несущие конструкции, всевозможные инструменты и другие предметы.

1

Углеродистые стали (УС) представляют собой металлургические низколегированные композиции, содержащие до 99,5 % железа. В них также вводятся в строго дозированных количествах различные добавки. Последние обуславливают особые эксплуатационные, технологические и механические свойства интересующих нас сплавов. От общего количества сталей, выплавляемых на металлургических предприятиях, на долю углеродистых композиций приходится порядка 80 %. Сейчас известно более двух тысяч марок таких сплавов. По сфере применения все они делятся на конструкционные, инструментальные и стали обыкновенного качества.

Углеродистая сталь

Их структура зависит от процентного содержания углерода. Изменяя его количество, можно придать готовой композиции заданные свойства (текучесть, плотность, пластичность, твердость). Если углеродистая сталь содержит менее 0,8 % углерода, ее структура включает в себя перлит и феррит. В сплавах с углеродом более 0,8 % обязательно присутствует цементит (вторичный). А вот низколегированная сталь с содержанием интересующего нас элемента на уровне 0,8 % имеет перлитную структуру. Прочность сплава, его ударная вязкость и порог хладноломкости повышаются при увеличении содержания углерода в нем. Но при этом фиксируется снижение пластичности проката.

Углеродистые стали подразделяют на три типа в зависимости от своего химсостава. Они могут быть низко-, средне- и высокоуглеродистыми. В первых углерод присутствует в малых количествах (до 0,25 %). Такие композиции хорошо деформируются (их плотность сравнительно мала) и в горячем состоянии, и в холодном, обладая высокой степенью пластичности. В среднеуглеродистом прокате углерода имеется 0,3–0,6 %. Эти сплавы характеризуются неплохой текучестью и пластичностью и при этом достаточной прочностью. Чаще всего они используются для строительных и иных конструкций, которые эксплуатируются в обычных условиях.

Всевозможные измерительные приборы и инструменты повышенной прочности делают из высокоуглеродистых (0,6–1,4 %) сплавов. Они имеют повышенную плотность и ряд уникальных характеристик (их обуславливает особая структура выплавляемой стали). Таким образом, область применения углеродистых композиций зависит от их химического состава и непосредственно от назначения конкретной марки стали. Позже поговорим об этом подробнее.

2

Кроме углерода, в УС всегда имеются включения других химических элементов. К таковым относят кислород, водород, фосфор, марганец, азот, серу, кремний. От количества этих примесей зависит плотность готового проката и другие его механические свойства. Марганец дает возможность выполнять раскисление УС. Поэтому его специально добавляют в любой сплав. Под раскислением понимают важную и полезную операцию – удаление вредных продуктов закиси железа. За счет введения марганца структура металла становится более качественной. Он обеспечивает растворение сернистых веществ в цементите и феррите.

Трубы из углеводородистой стали

Аналогичную функцию выполняет и кремний. Он отлично раскисляет металлургические композиции. Их структура благодаря этому обретает требуемую упорядоченность. Здесь стоит отметить, что кремний полностью растворяется в феррите. Лишь небольшая его часть иногда остается в виде силикатов в углеродистых сплавах. Низколегированная сталь при этом не теряет своих стандартных характеристик. Негативное воздействие на свойства УС оказывает сера и фосфор. Первая попадает в металл из печных газов и из руды. Сера снижает плотность проката (усредненный ее показатель равняется 7,8 г/куб. см) и делает сплав хрупким. По этой причине ее содержание в УС должно контролироваться и корректироваться. В качественном углеродистом прокате серы не может быть более 0,04 %, в обыкновенном – более 0,03.

Фосфор попадает в сталь из флюсов и железной руды. При большом содержании данного элемента прокат становится хрупким. Это приводит к хладноломкости сплава, что недопустимо. В настоящее время фосфор без проблем удаляется из металлургических углеродистых композиций, применение которых требует минимального содержания этой примеси. Углеродистые и легированные стали в незначительных объемах содержат азот, водород, кислород. Их количество зависит от вида металлургического производства (конвертерный, мартеновский процесс, выплавка в электрических агрегатах). Азота и водорода в прокате может быть от 0,0001 до 0,0007 %, кислорода – от 0,002 до 0,03 %.

Чрезмерное содержание таких примесей становится причиной увеличения предела хладноломкости сплавов. Они могут снижать ударную вязкость стали. Особенно опасен переизбыток водорода. Он может привести к появлению флокенов – надрывов в готовом прокате. При их наличии структура и свойства металла ухудшаются.

3

Обычная углеродистая сталь изготавливается в виде балок, прутьев, листьев и швеллеров. Ее свойства позволяют применять сплавы обыкновенного качества в машиностроительной отрасли и в строительной сфере в качестве надежных опорных изделий. Маркируются обычные стали буквами Ст и цифрой от 0 до 6. Последние указывают на прочность сплава. Чем большая цифра стоит в маркировке, тем более прочной является сталь. Обозначение УС также включает в себя методику раскисления металлургической композиции. С этой точки зрения сплавы могут быть:

  • кипящими (маркировка – КП);
  • полуспокойными (ПС);
  • спокойными (СП).

Изделия из прочной стали

Кроме того, обычные по качеству углеродистые стали делят на подвиды А, Б и В. Сплавы группы А нельзя использовать для производства сварных конструкций. Эти стали не регламентируются по химическому составу. Их основным показателем принято считать механические свойства. Сплавы Б-подвида имеют строго определенный химсостав. При этом их механические свойства могут изменяться. Изделия из сталей группы Б допускается подвергать термической обработке, ковке, штамповке. Самыми дорогими (и, конечно же, качественными) являются сплавы В-подвида. Их химсостав и механические свойства четко соответствуют требованиям Госстандартов. За счет особых характеристик таких сталей их разрешается сваривать без ограничений (по разным технологиям).

Конструкционные УС поставляют в виде разнообразных полуфабрикатов, включая различные варианты поковок и проката. Такие качественные углеродистые стали имеют мало неметаллических примесей и негативно влияющих на свойства стали элементов (серы и фосфора). Поэтому их характеристики (механические и химические) являются строго гарантированными. Обозначаются конструкционные качественные сплавы числами, состоящими из двух цифр – 45, 20, 08, 85 и так далее. Этот код указывает содержание (в сотых частях процента) углерода в готовом прокате. Если перед нами сталь с маркировкой 45, несложно понять, что углерода в ней около 0,45 %. Конструкционные УС идеально подходят для производства широкой номенклатуры машиностроительных изделий. Важно! Начальные свойства таких сплавов (эксплуатационные и прочностные) легко повышаются посредством проведения их термической обработки.

Находят применение при изготовлении инструмента для обработки древесины, матриц, фрез, пневматического инструмента, плашек, сверлильных приспособлений, кусачек, плоскогубцев и аналогичных инструментов. Также из них делают ножовочные полотна, напильники, измерительные механизмы. Маркируются инструментальные сплавы литерой У, цифрами, указывающими на количество углерода (десятые части процента), а также дополнительной буквой А (ставится в конце обозначения стали, если речь идет о прокате высокого качества). Если перед вами сплав с маркировкой У13А, сразу можно понять, что вы имеете дело с инструментальной высококачественной сталью с углеродом 1,3 %.

4

При колебаниях температуры от +20 до +900° плотность рассматриваемых сталей практически не изменяется. Эта величина находится в пределах 7,7–7,9 г/куб.см. По сути, плотность УС аналогична показателю плотности железа. Это логично, ведь основу любого углеродистого сплава составляет именно оно. Изменить плотность, а также свойства и структуру УС позволяет их термообработка. Под такой операцией понимают нагрев сплава, а затем его охлаждение.

Термообработка стали

Термическая обработка углеродистых сталей бывает следующих видов:

  • отжиг;
  • отпуск;
  • закалка;
  • нормализация.

Применение позволяет получить сплавы со структурой, мало чем отличающейся от равновесной. Такая операция осуществляется по простой схеме: нагрев металла до определенной температуры и его выдержка в течение заданного времени, а затем охлаждение проката (оно происходит, как правило, вместе с печью на протяжении относительно длительного временного отрезка). Закалка углеродистой стали производится аналогичным образом. Но охлаждается нагретый металл в данном случае с заданной (достаточно быстрой) скоростью. Она подбирается металлургами так, чтобы готовый прокат получил полностью мартенситную структуру. При закалке обязательным является применение специальных масел, соляных растворов либо воды. Эти жидкости обеспечивают быстрое охлаждение УС.

Отпуск дает возможность получить прокат с определенными свойствами. Он применяется только для закаленных ранее сплавов. Отпуск обеспечивает снятие напряжений (внутренних) в металле и повышение его механических параметров. Углеродистая сталь, кроме того, может подвергаться нормализации (нагрев, выдержка и остывание естественным путем на открытом воздухе). Такой процесс не относят к основным типам термообработки. Он, скорее, представляет собой подвид стандартной закалки или отжига.

Углеродистая сталь благодаря доступной стоимости и высоким прочностным характеристикам относится к широко распространенным сплавам. Из таких сталей, состоящих из железа и углерода и минимума других примесей, изготавливают различную машиностроительную продукцию, детали колов и трубопроводов, инструменты. Широкое применение эти сплавы находят и в строительной сфере.

Что собой представляют углеродистые стали

Углеродистые стали, которые в зависимости от основной сферы применения подразделяются на конструкционные и инструментальные, практически не содержат в своем составе легирующих добавок. От обычных стальных сплавов эти стали также отличает и то, что в их составе содержится значительно меньшее количество таких базовых примесей, как марганец, магний и кремний.

Содержание основного элемента – углерода – в сталях данной категории может варьироваться в достаточно широких пределах. Так, высокоуглеродистая сталь содержит в своем составе 0,6–2% углерода, среднеуглеродистые стали – 0,3–0,6%, низкоуглеродистые – до 0,25%. Данный элемент определяет не только свойства углеродистых сталей, но и их структуру. Так, внутренняя структура стальных сплавов, содержащих в своем составе менее 0,8% углерода, состоит преимущественно из феррита и перлита, при увеличении концентрации углерода начинает формироваться вторичный цементит.

Углеродистые стали с преобладающей ферритной структурой отличаются высокой пластичностью и низкой прочностью. Если же в структуре стали преобладает цементит, то она характеризуется высокой прочностью, но вместе с этим является и очень хрупкой. При увеличении количества углерода до 0,8–1% прочностные характеристики и твердость углеродистой стали возрастают, но значительно ухудшаются ее пластичность и вязкость.

Количественное содержание углерода также оказывает серьезное влияние на технологические характеристики металла, в частности на его свариваемость, легкость обработки давлением и резанием. Из сталей, относящихся к категории низкоуглеродистых, изготавливают детали и конструкции, которые не будут подвергаться значительным нагрузкам в процессе эксплуатации. Характеристики, которыми обладают среднеуглеродистые стали, делают их основным конструкционным материалом, используемым в производстве конструкций и деталей для нужд общего и транспортного машиностроения. благодаря своим характеристикам оптимально подходят для изготовления деталей, к которым предъявляются повышенные требования по износостойкости, для производства ударно-штампового и измерительного инструмента.

Углеродистая сталь, как и стальной сплав любой другой категории, содержит в своем составе различные примеси: кремний, марганец, фосфор, серу, азот, кислород и водород. Часть этих примесей, такие как марганец и кремний, являются полезными, их вводят в состав стали на стадии ее выплавки для того, чтобы обеспечить ее раскисление. Сера и фосфор – это вредные примеси, которые ухудшают качественные характеристики стального сплава.

Хотя считается, что несовместимы, для улучшения их физико-механических и технологических характеристик может выполняться микролегирование. Для этого в углеродистую сталь вводятся различные добавки: бор, титан, цирконий, редкоземельные элементы. Конечно, при помощи таких добавок не получится сделать из углеродистой стали нержавейку, но заметно улучшить свойства металла они вполне могут.

Классификация по степени раскисления

На разделение углеродистых сталей на различные типы оказывает влияние в том числе такой параметр, как степень раскисления. В зависимости от данного параметра углеродистые стальные сплавы делятся на спокойные, полуспокойные и кипящие.

Более однородной внутренней структурой отличаются спокойные стали, раскисление которых осуществляют, добавляя в расплавленный металл ферросилиций, ферромарганец и алюминий. За счет того, что сплавы данной категории были полностью раскислены в печи, в их составе не содержится закиси железа. Остаточный алюминий, который препятствует росту зерна, наделяет такие стали мелкозернистой структурой. Сочетание мелкозернистой структуры и практически полное отсутствие растворенных газов позволяет формировать качественный металл, из которого можно изготавливать наиболее ответственные детали и конструкции. Наряду со всеми своими достоинствами углеродистые стальные сплавы спокойной категории имеют и один существенный недостаток – их выплавка обходится достаточно дорого.

Более дешевыми, но и менее качественными являются кипящие углеродистые сплавы, при выплавке которых используется минимальное количество специальных добавок. Во внутренней структуре такой стали из-за того, что процесс ее раскисления в печи не был доведен до конца, присутствуют растворенные газы, которые негативно отражаются на характеристиках металла. Так, азот, содержащийся в составе таких сталей, плохо влияет на их свариваемость, провоцируя образование трещин в области сварного шва. Развитая ликвация в структуре этих стальных сплавов приводит к тому, что металлический прокат, который из них изготовлен, имеет неоднородность как по своей структуре, так и по механическим характеристикам.

Промежуточное положение и по своим свойствам, и по степени раскисления занимают полуспокойные стали. Перед заливкой в изложницы в их состав вводят небольшое количество раскислитилей, благодаря чему металл затвердевает практически без кипения, но процесс выделения газов в нем продолжается. В итоге формируется отливка, в структуре которой содержится меньше газовых пузырей, чем в кипящих сталях. Такие внутренние поры в процессе последующей прокатки металла практически полностью завариваются. Большая часть полуспокойных углеродистых сталей используется в качестве конструкционных материалов.

Ознакомиться со всеми требованиями ГОСТ к углеродистой стали можно, скачав данный документ в формате pdf по ссылке ниже.

Методы производства и разделение по качеству

Для производства углеродистых сталей используются различные технологии, что сказывается на их разделении не только по способу производства, но и по качественным характеристикам. Так, различают:

  • высококачественные стальные сплавы;
  • углеродистые стальные сплавы обыкновенного качества.

Стальные сплавы, обладающие обыкновенным качеством, выплавляются в мартеновских печах, после чего из них формируют слитки больших размеров. К плавильному оборудованию, которое используется для получения таких сталей, относятся также кислородные конвертеры. По сравнению с качественными стальными сплавами, рассматриваемые стали могут иметь большее содержание вредных примесей, что сказывается на стоимости их производства, а также на их характеристиках.

Сформированные и полностью застывшие слитки металла подвергают дальнейшей прокатке, которая может выполняться в горячем или холодном состоянии. Методом горячей прокатки производят фасонные и сортовые изделия, толстолистовой и тонколистовой металл, металлические полосы большой ширины. При помощи прокатки, выполняемой в холодном состоянии, получают тонколистовой металл.

Для качественной и высококачественной категорий могут использоваться как конвертеры и мартеновские печи, так и более современное оборудование – плавильные печи, работающие на электричестве. К химическому составу таких сталей, наличию в их структуре вредных и неметаллических примесей соответствующий ГОСТ предъявляет очень жесткие требования. Например, в сталях, которые относятся к категории высококачественных, должно содержаться не более 0,04% серы и не больше 0,035% фосфора. Качественные и высококачественные стальные сплавы благодаря строгим требованиям к способу их производства и к характеристикам отличаются повышенной чистотой структуры.

Область применения

Как уже говорилось выше, углеродистые стальные сплавы по основному назначению делят на две большие категории: инструментальные и конструкционные. , содержащие 0,65–1,32% углерода, используются в полном соответствии со своим названием – для производства инструмента различного назначения. Для того чтобы улучшить механические свойства инструментов, обращаются к такой технологической операции, как , которая выполняется без особых сложностей.

Конструкционные стальные сплавы применяются в современной промышленности очень широко. Из них делают детали для оборудования различного назначения, элементы конструкций машиностроительного и строительного назначения, крепежные детали и многое другое. В частности, такое популярное изделие, как проволока углеродистая, производится именно из стали конструкционного типа.

Используется проволока углеродистая не только в бытовых целях, для производства крепежа и в строительной сфере, но и для изготовления таких ответственных деталей, как пружины. После выполнения цементации конструкционные углеродистые сплавы можно успешно использовать для производства деталей, которые в процессе эксплуатации подвергаются серьезному поверхностному износу и испытывают значительные динамические нагрузки.

Конечно, углеродистые стальные сплавы не обладают многими свойствами легированных сталей (в частности, той же нержавейки), но их характеристик вполне хватает для того, чтобы обеспечить качество и надежность деталей и конструкций, которые из них изготавливаются.

Особенности маркировки

Правила составления которой строго оговорены пунктами соответствующего ГОСТа, позволяет узнать не только химический состав представленного сплава, но и то, к какой категории он относится. В обозначении углеродистой стали, обладающей обыкновенным качеством, присутствуют буквы «СТ». Пунктами ГОСТа оговаривается семь условных номеров марок таких сталей (от 0 до 6), которые также указываются в их обозначении. Узнать, какой степени раскисления соответствует та или иная марка, можно по буквам «кп», «пс», «сп», которые проставляются в самом конце маркировки.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту