Советы по строительству и ремонту

- таксономия

- номенклатура

- филогенетика

таксономическим рангом - вид (species) . Над видом располагаются род (genus) , семейство (familia) , порядок (ordo) , подкласс (subclassis) , класс (classis) , отдел (divisio) и царство (regnum) . подвид (subspecies) , разновидность (varietas) , форма (forma) сорт .

Таксон . сосна лесная (обыкновенная) Pinus sylvestris

Схема филогенетических отношений

В настоящее время общая схема филогенетических (родственных) отношений между основными группами живых организмов выглядит следующим образом.

I. Империя неклеточные организмы (Noncellulata ) (не имеют морфологически оформленной клетки). Империя включает одно царство вирусы (Virae).

II. Империя клеточные организмы (Сellulata ) (имеют морфологически оформленную клетку).

Включает две подимперии.

1. Подимперия доядерные (Procaryota ) - не имеют морфологически оформленного ядра.

Объединяет два царства:

А) Царство архебактерии (Archaebacteria) ;

Б) Царство настоящие бактерии, или эубактерии (Eubacteria)

2. Подимперия ядерные, или эукариоты (Eucaryota ) - имеют морфологически оформленное ядро.

Подразделяется на четыре царства:

А) Царство протоктисты (Protoctista) включает водоросли и грибоподобные организмы.

Б) Царство растения (Plantae)

В) Царство грибы (Fungi, Mycota)

Г) Царство животные (Animalia)

Различают следующие классификацииспособов питания живых организмов

1. По источнику углерода :

1) автотрофный способ питания (удовлетворение потребностей в органических веществах, путем синтеза их из простых неорганических соединений, т.е. это организмы, живущие за счет неорганического источника углерода. В данном типе выделяются: фотоавтотрофный способ (использование солнечной энергии) и хемоавтотрофный способ (использование химической энергии).

2. По типу окисляемого субстрата:

- литотрофы (окисляют неорганические соединения H 2 O, H 2 S, S, H 2);

- органотрофы (окисляют органические вещества).

По способу получения пищи

- голозойный тип питания - питание твёрдыми пищевыми частицами (органической пищей) посредством их захвата внутрь тела организма, которые затем перевариваются и всасываются в пищеварительной системе (животные, насекомоядные растения).

- голофитный способ питания - питание без захвата твёрдых пищевых частиц посредством транспорта (пассивного - осмоса, или активного) растворённых питательных веществ через поверхностные структуры клетки. Данный способ характерен для фотосинтезирующих растений, грибов и большинства микроорганизмов.

5.2. Неклеточные организмы (Noncellulata). Царство вирусы (Virae)

Вирусная частица (вирион) состоит из нуклеиновой кислоты (ДНК или РНК), окруженной белковой оболочкой – капсидом, состоящим из капсомеров .

Вирусы обладают следующими характерными особенностями:

Не имеют клеточного строения;

Имеют мельчайшие размеры, размеры вириона различных вирусов - от 15 до 400 нм (большинство видны только в электронный микроскоп);

Не имеют собственных метаболических систем;

Используют рибосомы клетки-хозяина для образования собственных белков;

Не способны к росту и делению;

Не размножаются на искусственных питательных средах.

Вирусы микроорганизмов названы фагами. Так, существуют бактериофаги (вирусы бактерий), микофаги (вирусы грибов), цианофаги (вирусы цианобактерий). Фаги обычно имеют многогранную призматическую головку и отросток (рис.1) .

Рис. 1. Строение бактериофага Т4:

1 - головка; 2 - хвост; 3 - нуклеиновая кислота; 4 - капсид; 5 - «воротничок»; 6 - белковый чехол хвоста; 7 - фибрилла хвоста; 8 - шипы; 9 - базальная пластинка

Головка покрыта оболочкой из капсомеров и содержит внутри ДНК. Отросток представляет собой белковый стержень, покрытый чехлом из спирально расположенных капсомеров. После попадания фага бактерия утрачивает способность к делению и начинает производить не вещества собственной клетки, а частицы бактериофага. В итоге клеточная стенка бактерии растворяется (лизируют), из нее выходят зрелые бактериофаги. Недостаточно активный фаг может существовать в клетке микроорганизма, не вызывая лизиса. Фаги встречаются в воде, почве и других природных объектах. Некоторые фаги используют в генетической инженерии, в медицине для профилактики заболеваний.

5.3.Подимперия доядерные (Procaryota )

Прокариоты – это одноклеточные, колониальные или многоклеточные организмы, которые не имеют морфологически оформленного (ограниченного мембраной) ядра и объединяют два царства – архебактерии (Archaebacteria ) и настоящие бактерии, или эубактерии (Bacteria, Eubacteria )

Сходства с растениями

Наличие клеточной стенки, поглощение питательных веществ из растворов путем всасывания (абсорбция ), отсутствие подвижности в вегетативном состоянии, неограниченный рост.

Сходства с животными

Образование в ходе обмена веществ мочевины , накопление гликогена в качестве запасного углевода, а не крахмала, присутствие хитина в клеточной стенке

Цикл развития спорыньи

Образование склероция (покоящейся стадии гриба)

При сильном поражении ржи на отдельных колосьях может быть до 3-4 склероциев. Далее при уборке хлеба склероции могут самопроизвольно опадать на землю (они хорошо переносят морозы и на следующий год после всходов ржи начинают прорастать), или при обмолоте попадать в зерно.

Сумчатая стадия

На прорастающем склероции появляются красные или темно-розовые булавовидные плодовые тела, состоящие из тонких ножек и шаровидных головок, усаженных многочисленными мелкими коническими выступами ("бородавочками"). Эта стадия – строма. Бородавочки на головке являются выходами перитециев - яйцевидных полостей, образующихся в периферической части головки. В перитециях вырастают многочисленные булавовидной формы сумки, в каждой из которых развивается по 8 нитевидных аскоспор. К моменту цветения ржи плодовые тела гриба полностью созревают; при этом из слизисто разбухающих перитециев выдавливаются сумки, которые лопаются; при этом из них выбрасываются аскоспоры и воздухом разносятся по цветущей ржи.

Конидиальная стадия гриба

Начинается с попадания аскоспор на перистые рыльца цветков ржи и их прорастания. Из сплетения гиф на завязи цветка образуется грибница, по мере развития которой начинается бесполое размножение гриба. Заключается оно в отшнуровывании с концов гиф многочисленных мелких эллиптических конидиоспор. Одновременно грибницей вырабатывается клейкая жидкость, содержащая сахаристые вещества, называемая "медвяной росой". Капли последней стекают по пораженному колосу, унося с собой конидиоспоры. Сладкая жидкость привлекает насекомых, которые, перелетая на другие колосья, разносят конидиоспоры, способствуя, тем самым, новому (повторному) заражению ржи. Конидиоспоры, попав на здоровые цветки ржи, также прорастают, образуя на завязи грибницу. Постепенно грибницы (образовавшиеся как из аскоспор, так и из конидиоспор), разрастаясь, разрушают завязь, и, в конечном счете, на месте и вместо зерна развивается белое продолговатое крупное грибное тело - молодой склероций. К моменту созревания ржи созревают и склероции; гифы уплотняются, наружный слой склероция при этом пигментируется, окрашиваясь в темно-фиолетовый цвет (рис. 13,14).

Рис. 13. Цикл развития спорыньи пурпурной (Claviceps purpurea ):

1 – колос ржи со склероциями, 2 – склероций, проросший головчатыми стромами, 3 - разрез стромы с перитециями, 4 – отдельный перитеций в строме с сумками, 5 – сумка с аскоспорами, 6 – конидиальное спороношение, ск – склероции, ст – стромы, п – перитеций,

с – сумки, сп – споры

Рис. 14. Спорынья пурпурная (Claviceps purpurea ): колос ржи со склероциями, склероций, проросший головчатыми стромами

Рожки (склероции) спорыньи эрготаминового (эрготоксинового) штамма содержат алкалоиды, обладающие ядовитыми свойствами и оказывающие сложное влияние на организм человека. Незначительное их количество в муке способно вызвать тяжелое заболевание – эрготизм , иногда приводящее к смерти. В современной медицине алкалоиды спорыньи широко применяются для лечения сердечно-сосудистых и нервных заболеваний (адреноблокирующая активность), а также в акушерской практике (вызывают сокращение матки).

Плодовое тело - апотеций имеют пецица (Peziza ), строчок (Gyromitra ), сморчок (Morchella ) и другие пецицевые грибы (рис. 15).

Рис. 15. Пецицевые грибы: 1 - сморчок конический (Morchella conica); 2 - шапочка сморчковая (Verpa bohemica); 3 - гельвелла ямчатая (Helvella lacunosa); 4 - строчок обыкновенный (Gyromitra esculenta)

Пецица встречается в лесах, на местах пожарищ, на почве огородов, коровьем навозе. Ее апотеции более или менее мясистые, и имеют окраску от желтой до красной и коричневой. Строчок и сморчок встречаются в лесу рано весной. Плодовое тело состоит из шляпки с морщинистой поверхностью, выстланной гимением (слой асков, разделенных парафизами (бесплодными гифами)) и ножки. Строчки содержат ядовитую гельвелловую кислоту (разрушается после длительного кипячения).

Отдел Базидиомикоты, или базидиальные грибы (Basidiomycota)

Конидиальное спороношение у базидиомикот встречается редко. Половой процесс осуществляется путем слияния двух вегетативных клеток гаплоидного (первичного) мицелия.

Специальных органов полового размножения у базидиомикот нет. Органом полового спороношения является особая репродуктивная структура - базидия , на которой образуются базидиоспоры . Гифы, вырастающие из базидиоспор берут начало от спор противоположных половых знаков: «+» и «-», и при их соприкосновении происходит половой процесс (соматогамия ) . При этом содержимое клетки одной гифы переходит в клетку другой, где происходит слияние цитоплазмы (плазмогамия ) . Ядра не сливаются, а образуют пары – дикарионы , которые впоследствии одновременно делятся, образуя дикарионный (вторичный ) мицелий. На дикарионном мицелии образуются выросты – базидии куда переходят дикарионы с цитоплазмой. В базидии завершается половой процесс: сливаются ядра дикариона (кариогамия ), редукционно (мейозом) делится диплоидное ядро и возникает 4 гаплоидных ядра. В верхней части базидии образуются четыре трубчатых выроста с расширением на конце. В них переходят ядра с цитоплазмой и возникают четыре базидиоспоры: две со знаком «+» и две со знаком «-», впоследствии образующие гетероталличные гаплоидные мицелии (рис. 16 ).

Базидии с базидиоспорами могут возникать прямо на мицелии, либо на плодовых телах (или внутри них). Плодовые тела различны по форме и консистенции (рыхлые, паутинистые, деревянистые и т.д.). На их верхней или нижней стороне располагается спороносный слой – гимений . Поверхность плодового тела, несущая гимений, называется гименофором .

Рис. 16. Размножение шляпочного гриба: 1 – мицелий гриба; 2 – плодовое тело; 3 – пластинки с гименофором; 4 – базидия; 5 – молодое плодовое тело гриба, покрытое покрывальцем; 6 – бизидиоспоры; 7 – одноядерный мицелий; 8 – дикарионический мицелий

По типу развития и строению базидии базидиомикоты подразделяются на три класса: холобазидиомицеты (Holobasidiomycetes ), фрагмобазидиомицеты Phragmobasidiomycetes , гетеробазидиомицеты (Heterobasidiomycetes) .

Класс Холобазидиомицеты (Holobasidiomycetes)

Это, в основном, грибы - сапрофиты. Базидии одноклеточные и вместе с бесплодными гифами образуют гимениальный слой. Последний развивается на гименофоре (плотная основа плодового тела из сплетенных гиф), который может быть трубчатым и пластинчатым. Трубчатый гименофор имеют представители семейств трутовиковые и болетовые , пластинчатый – грибы из семейств пластинниковые, мухоморовые .

К семейству трутовиковые относятся:

домовой гриб (Serpula lacrymans ) - разрушитель древесины;

трутовик косотрубчатый (чага) (Inonotus obliquus ) (рис. 18) - повсеместно поражает березовые леса, образуя черные растрескивающиеся наросты на березе.

Чагу заготавливают для медицинских целей, готовят настойки и экстракты, обладающие противоопухолевым, противовоспалительным и общетонизирующим действием.

У представителей семейств болетовые, агариковые и мухоморовые гименофор расположен на нижней стороне мягкомясистых плодовых тел, имеющих хорошо различимые центральную ножку («пенек») и шляпку.

Виды семейства болетовые имеют плодовые тела разной окраски с трубчатым гименофором . Почти все представители данного семейства вступают в симбиоз с корнями высших растений, образуя экзотрофную микоризу (гриб оплетает корень, оставаясь на его поверхности). Наиболее ценен белый гриб (Boletus edulis ) (рис. 19), он образует микоризу со многими лиственными и хвойными породами. Иногда характерна приуроченность к определенным типам леса и видам древесных растений: подосиновик (B. aurantiacus) - в осиновых лесах, подберезовик (B. scaber ) - в березовых.

Рис. 17. Настоящий трутовик (Fomes fomentarius)

Рис. 18. Чага, трутовик косотрубчатый (Jnonotus obliguus)

Рис. 19. Белый гриб (Boletus edulis)

Рис. 20. Шампиньон обыкновенный (Agaricus campestris)

Рис. 21. Мухомор красный (Amanita muscaria)

Рис. 22. Мухомор вонючий, или белая поганка (Amanita virosa)

Рис. 23. Бледная поганка (Amanita phalloides)

Класс Фрагмобазидиомицеты (Phragmobasidiomycetes)

Представители: твердая головня пшеницы (Tilletia trutiсa ) и пыльная головня пшеницы (Ustilago trutica ) (рис. 24).

Отличаются между собой лишь морфологическими признаками сорусов и телиоспор. Проявляется болезнь в молочно-восковой фазе спелости. Пораженные растения немного отстают в росте, имеют сплющенный колос, имеют более интенсивную зеленую с синим оттенком окраску, в сравнении со здоровыми растениями. Колосковые чешуйки раздвинуты, в зернах вместо белого «молочка» образуется серая жидкость с запахом селедочного рассола (триметиламин). Со временем по мере созревания пшеницы разница в окраске пораженного и здорового колоса исчезает, однако пораженный колос остается прямостоячим. Вместо зерен в них образуется продольные сорусы (головневые мешочки). Оболочка зерновок остается неразрушенной, а наполняет их оливково-бурая масса головневых спор – телиоспор.

Во время обмолота сорусы разрушаются, телиоспоры попадают на поверхность здорового зерна, в солому, частично на поверхность почвы, инфекция накапливается на уборочных и зерноочистных машинах, транспортных средствах, таре. Все это может являться источником инфекции и для здорового зерна.

Попадая в почву телиоспоры сохраняют совою жизнедеятельность на протяжении 1-3 недель. В сухой почве они сохраняют способность к прорастанию не более одного года. Поэтому основным источником инфекции есть заспоренные телиоспорами семена.

При прорастании таких семян прорастают и телеоспоры, образуя базидии с базидиоспорами. Вследствие копуляции базидиоспор образуется инфекционная гифа, которая проникает в молодой проросток пшеницы. В пораженных всходах мицелий распространяется по межклетниках. Достигая колоса в период его формирования, он усиленно разрастается и последствии распадается на телиоспоры, образуя сорусы (рис. 25).

Царство Грибоподобные протисты (MYCETALIA)

Цикл развития миксомицетов

У большинства представителей спорангии покрываются твердой оболочкой. Внутри спорангиев образуются одноклеточные споры, одетые плотной целлюлозной оболочкой, содержащие запасные питательные вещества, а также капиллиций – нити разнообразного строения, служащие для разрыхления споровой массы и рассеивания спор. После созревания плодовых тел оболочка их разрывается и споры выбрасываются наружу. При подходящих условиях (в присутствии капельножидкой среды) каждая спора раскрывается и из нее выходит протопласт, который либо изначально остается амебовидным, либо формирует два неравных жгутика на переднем конце (т.е. в этом случае образуется зооспора). После некоторого периода движения зооспоры теряют жгутики и превращаются в амебовидные организмы, которые размножаются делением. Две эти формы (зооспоры и амебы) могут легко превращаться друг в друга.

Далее, амебовидные организмы попарно сливаются, происходит кариогамия (слияние ядер), и они превращаются в диплоидные миксамебы. Затем, в свою очередь, они сливаются (происходит только плазмогамия – слияние плазменного содержимого клетки, но не ядер) и образуется плазмодий.

Рис. 37. Трихия обманчивая (Trichia decipiens)

Вегетативное тело слизевиков – плазмодий (слизистая, не одетая оболочкой многоядерная протоплазма), имеющий разнообразную окраску: розовую, лимонно-желтую, красную, фиолетовую и др. Плазмодий медленно передвигается, подобно амёбам, поглощая и переваривая бактерии, мелкие грибы, частицы разлагающихся растений и животных. Размеры их варьируют от нескольких миллиметров до 1 м в диаметре, но их масса при этом невелика - до 20-30 г.

В период вегетативного развития слизевики обитают в сырых, темных местах. На свет выползают для образования плодовых тел, спорангиев, в которых формируются гаплоидные споры. Последние в воде прорастают в зооспоры, а во влажной среде – в миксамёбы. После некоторого периода развития зооспоры или миксамёбы попарно копулируют, образуя диплоидные миксамёбы, которые, многократно делясь и разрастаясь, формируют плазмодий.

Тема 5. ОСНОВЫ СИСТЕМАТИКИ ЖИВЫХ ОРГАНИЗМОВ

Современная систематика подразделяется на несколько разделов:

- таксономия - теория и практика классификации организмов, при которой распределяется все множество вновь выявленных и уже известных организмов в соответствии с их сходством и различиями или предполагаемым родством по определенной системе соподчиненных категорий;

- номенклатура - вся совокупность названий таксонов;

- филогенетика - устанавливает родство организмов в историческом плане (филогения) и ход исторического развития мира живых организмов (филогенез).

Наиболее распространенная система, которую сегодня используют ботаники - иерархическая. Любая ступень иерархии системы называется таксономическим рангом (таксономическая категория). Главным таксономическим рангом является - вид (species) . Над видом располагаются род (genus) , семейство (familia) , порядок (ordo) , подкласс (subclassis) , класс (classis) , отдел (divisio) и царство (regnum) . Внутри вида могут быть выделены более мелкие систематические единицы: подвид (subspecies) , разновидность (varietas) , форма (forma) ; для культурных употребляется категория - сорт .

Таксон – это реально существующие группы организмов, отнесенные в процессе классификации к определенным таксономическим категориям. Научные названия всех таксонов, относящихся к таксономическим категориям выше вида, состоят из одного латинского слова и имеют определенные окончания, которые указывают ранг данного таксона. Название вида состоит из двух латинских слов (биноминальны). Первое слово – это родовое название, второе - видовой эпитет. Например, сосна лесная (обыкновенная) Pinus sylvestris (бинарная номенклатура,К. Линней, 1753).

В настоящее время органический мир Земли насчитывает около 1,5 млн видов животных, 0,5 млн видов растений, около 10 млн микроорганизмов. Изучить такое многообразие организмов невозможно без их систематизации и классификации.

Большой вклад в создание систематики живых организмов внес шведский натуралист Карл Линней (1707-1778). В основу классификации организмов он положил принцип иерархии, или соподчиненности, а за наименьшую систематическую единицу принял вид. Для названия вида была предложена бинарная номенклатура, согласно которой каждый организм идентифицировался (назывался) по его роду и виду. Названия систематических таксонов было предложено давать на латинском языке. Так, например, кошка домашняя имеет систематическое название Felis domestica. Основы линнеевской систематики сохранились до настоящего времени.

Современная классификация отражает эволюционные взаимоотношения и родственные связи между организмами. Принцип иерархии сохраняется.

Вид - это совокупность особей, сходных по строению, имеющих одинаковый набор хромосом и общее происхождение, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к сходным условиям обитания и занимающих определенный ареал.

В настоящее время в систематике используют девять основных систематических категорий: империя, надцарство, царство, тип, класс, отряд, семейство, род, вид (схема 1, таблица 4, рис. 57).

По наличию оформленного ядра все клеточные организмы делятся на две группы: прокариоты и эукариоты.

Прокариоты (безъядерные организмы) - примитивные организмы, не имеющие четко оформленного ядра. В таких клетках выделяется лишь ядерная зона, содержащая молекулу ДНК. Кроме того, в клетках прокариот отсутствуют многие органеллы. У них имеются только наружная клеточная мембрана и рибосомы. К прокариотам относятся бактерии.

Эукариоты - истинно ядерные организмы, имеют четко оформленное ядро и все основные структурные компоненты клетки. К ним относятся растения, животные, грибы.

Таблица 4

Примеры классификации организмов

Кроме организмов, имеющих клеточное строение, существуют и неклеточные формы жизни - вирусы и бактериофаги. Эти формы жизни представляют собой как бы переходную группу между живой и неживой природой.

Рис. 57. Современная биологическая система

* В столбце представлены только некоторые, но не все существующие систематические категории (типы, классы, отряды, семейства, роды, виды).

Вирусы были открыты в 1892 г. русским ученым Д. И. Ивановским. В переводе слово «вирус» означает «яд».

Вирусы состоят из молекул ДНК или РНК, покрытой белковой оболочкой, а иногда дополнительно липидной мембраной (рис. 58).

Рис. 58. Вирус ВИЧ (А) и бактериофаг (Б)

Вирусы могут существовать в виде кристаллов. В таком состоянии они не размножаются, не проявляют никаких признаков живого и могут сохраняться длительное время. Но при внедрении в живую клетку вирус начинает размножаться, подавляя и разрушая все структуры клетки-хозяина.

Проникая в клетку, вирус встраивает свой генетический аппарат (ДНК или РНК) в генетический аппарат клетки-хозяина, и начинается синтез вирусных белков и нуклеиновых кислот. В клетке-хозяине идет сборка вирусных частиц. Вне живой клетки вирусы не способны к размножению и синтезу белка.

Вирусы вызывают различные заболевания растений, животных, человека. К ним относятся вирусы табачной мозаики, гриппа, кори, оспы, полиомиелита, вирус иммунодефицита человека (ВИЧ), вызывающий заболевание СПИД.

Генетический материал вируса ВИЧ представлен в виде двух молекул РНК и специфического фермента обратной транскриптазы, который катализирует реакцию синтеза вирусной ДНК на матрице вирусной РНК в клетках лимфоцитов человека. Далее вирусная ДНК встраивается в ДНК клеток человека. В таком состоянии она может сохраняться долго, не проявляя себя. Поэтому антитела в крови у инфицированного человека образуются не сразу и обнаружить заболевание на этой стадии сложно. В процессе деления клеток крови ДНК вируса передается соответственно в дочерние клетки.

При каких-либо условиях вирус активизируется и начинается синтез вирусных белков, а в крови появляются антитела. В первую очередь вирус поражает Т-лимфоциты, ответственные за выработку иммунитета. Лимфоциты перестают узнавать чужеродные бактерии, белки и вырабатывать против них антитела. В результате организм перестает бороться с любой инфекцией, и человек может погибнуть от любого инфекционного заболевания.

Бактериофаги - это вирусы, поражающие клетки бактерий (пожиратели бактерий). Тело бактериофага (см. рис. 58) состоит из белковой головки, в центре которой находится вирусная ДНК, и хвостика. На конце хвоста располагаются хвостовые отростки, служащие для закрепления на поверхности клетки бактерии, и фермент, разрушающий бактериальную стенку.

По каналу в хвостике ДНК вируса вспрыскивается в клетку бактерии и подавляет синтез бактериальных белков, вместо которых синтезируются ДНК и белки вируса. В клетке происходит сборка новых вирусов, которые покидают погибшую бактерию и внедряются в новые клетки. Бактериофаги могут использоваться как лекарства против возбудителей инфекционных заболеваний (холеры, брюшного тифа).

| |
8. Многообразие органического мира § 51. Бактерии. Грибы. Лишайники

В настоящее время органический мир Земли насчитывает около 1,5 млн видов животных, 0,5 млн видов растений, около 10 млн микроорганизмов. Изучить такое многообразие организмов невозможно без их систематизации и классификации.

Большой вклад в создание систематики живых организмов внес шведский натуралист Карл Линней (1707–1778). В основу классификации организмов он положил принцип иерархии, или соподчиненности, а за наименьшую систематическую единицу принял вид. Для названия вида была предложена бинарная номенклатура, согласно которой каждый организм идентифицировался (назывался) по его роду и виду. Названия систематических таксонов было предложено давать на латинском языке. Так, например, кошка домашняя имеет систематическое название Felis domestica. Основы линнеевской систематики сохранились до настоящего времени.

Современная классификация отражает эволюционные взаимоотношения и родственные связи между организмами. Принцип иерархии сохраняется.

Вид – это совокупность особей, сходных по строению, имеющих одинаковый набор хромосом и общее происхождение, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к сходным условиям обитания и занимающих определенный ареал.

В настоящее время в систематике используют девять основных систематических категорий: империя, надцарство, царство, тип, класс, отряд, семейство, род, вид (схема 1, таблица 4, рис. 57).

По наличию оформленного ядра все клеточные организмы делятся на две группы: прокариоты и эукариоты.

Понятие о систематике, ее цели и задачи

Со времени античных натурфилософов происходило накопление описаний различных живых организмов – растений, животных, грибов. Люди видели, что одни организмы похожи между собой, другие – нет. Объяснить это с научной точки зрения они не могли. Но возникла необходимость упорядочить накопленную сумму знаний (объем информации). Поэтому полностью закономерным стало возникновение такой отрасли естествознания, как систематика.

Определение 1

Систематика – это наука, изучающая многообразие организмов на Земле, их классификацию и эволюционные взаимоотношения.

Главной задачей систематики было создание стройной системы видения органического мира с учетом взаимосвязей живых организмов, их происхождения и развития.

Успешное развитие систематики позволяет ученым предположить наличие тех или иных черт живых организмов на основе их принадлежности к определенной группе (таксону). Благодаря успехам современной систематики мы можем прогнозировать развитие живых организмов в будущем.

Развитие систематики

Как и любая отрасль человеческих знаний, систематика прошла длительный период развития и становления как науки. В прошлом систематика основывалась на констатации внешних морфологических признаков живых организмов и их географическом распространении. В настоящее время систематики широко используют также признаки внутреннего строения растений и животных, особенности строения клеток, их хромосомного аппарата, а также химический состав и экологические особенности живых организмов.

Замечание 1

Одними из первых предприняли попытку классифицировать все разнообразие живых организмов представители античной науки Гептадор, Аристотель, Теофраст. Они объединяли все живые организмы в соответствии со со своими философскими убеждениями. Растения они разделили на деревья и травы, а животных разделили на две группы – «холднокровных» и «теплокровных».

Это была первая естественная система, которая отражала упорядоченность, имеющуюся в природе.

Эпоха Великих Географических Открытий обогатила ученый мир знаниями о новых формах живых организмов, существенно расширив границы человеческих знаний.

Английский ученый Джон Рей заложил теоретические основы научной классификации живых организмов. Он предложил систематизировать их по схожести и отличиям, обнаруженным в процессе изучения.

Выдающуюся роль в создании стройной системы органического мира сыграл шведский ученый Карл Линней.

Карл Линней. Краткая историческая справка

Родился Карл Линней $23$ мая $1707$ года в Швеции, в семье деревенского священника. Уже в детские годы маленький Карл проявлял интерес к растениям. Родители хотели, чтобы их сын стал священником. Но юноша не проявлял никакого желания стать пастором. Поэтому родители разрешили ему изучать медицину в Лундском, затем – в Уппсальдском университетах.

По окончании университета Линней преподавал в ботаническом саду Уппсальского университета, изучал флору Лапландии, Голландии, островов Балтийского моря и южной Швеции, написал ряд работ по систематике растений. За свои заслуги Карл Линней в $1761$ году был произведен в дворянское сословие. Скончался Линней $10$ января $1778$ года.

Идеи Карла Линнея позволили создать единую систему классификации растений и животных. Предложенные им принципы классификации отличались простотой и удобством. Поэтому они широко использовались ботаниками и зоологами разных стран.

Систематика Линнея. Ее значение

Основой своей системы Карл Линней считал вид как элементарную единицу живой природы. Будучи верующим человеком, он считал виды живых организмов созданными творцом и неизменными. Правда, в конце жизни, Линней допускал возможность некоторых вариаций видов.

Карл Линней описал примерно $10$ тысяч видов растений. Почти $1500$ из них были открыты им самим. Кроме того он описал более $4000$ видов животных.

Линней окончательно ввел в систематику унифицированную бинарную (двойную) номенклатуру. Он сформулировал четкое представление о виде, как основной единице классификации, о дискретности вида и его устойчивости.

Виды Линней объединял в роды, роды – в отряды, отряды – в классы. За основу в классификации растений было взято строение цветка (количество тычинок). Всего Линней выделил $24$ класса растений и $6$ классов животных. Кроме того он разработал систему описания – четкие критерии, что существенно облегчило систематизацию.

Бинарная номенклатура, предложенная Линнеем, состояла из двух слов. Первое слово означало название рода, второе – видовое название. Но ради справедливости следует сказать, что предложенная Линнеем классификация была искусственной. Он часто брал не комплекс признаков. А всего один. Это приводило к тому, что он объединял в одну группу растения, которые не имели ничего общего. Например, морковь объединил со смородиной (пять тычинок в цветке), а злаковые он отнес к разным классам из-за разного количества тычинок.

По своим убеждениям он был креационистом и метафизиком. Он отвергал возможность изменения видов и их количества. Но это не умаляет заслуги Карла Линнея перед наукой. Наверное лучшей оценкой наследия Карла Линнея стали слова К.И. Тимирязева:

«Венцом и, вероятно, последним словом подобной классификации была и до сих пор не превзойденная в своей изящной простоте система растительного царства, предложенная Линнеем».

Растение именовано полностью, если оно
снабжено и родовым, и видовым именем.
К Линней

Как биологическая классификация помогает осознать взаимозависимость состава, структуры и свойств? Что такое бинарная номенклатура? Как пользоваться определителем? Какими современными методами оперирует систематика?

Урок-практикум

ЦЕЛЬ РАБОТЫ . Научиться выявлять общие признаки принадлежности живых организмов к той или иной группе; научиться пользоваться определителем и познакомиться с современными методами определения видов

ПЛАН РАБОТЫ . Выполните последовательно задания и сделайте выводы по каждому заданию.

Библиотечный каталог
Каковы, по вашему мнению, принципы научной классификации?

1. Сформулируйте, в чем состоит суть системы классификации живых организмов К. Линнея. Выделите признаки, по которым растения относят к одному семейству, одному роду, одному виду.

ПОДСКАЗКА . Основы современной систематики заложил шведский натуралист Карл Линней, Он предложил писать название вида на латыни в два слова: первое обозначает род. а второе - конкретный вид. Такое бинарное (двучленное) обозначение значительно упростило классификацию. Линней установил и принцип иерархичности систематических категорий (таксонов): сходные роды группируются в семейства, семейства - в отряды, отряды - в классы, классы - в типы, а типы - в царства. В подобном виде система классификации живых существ сохранилась до наших дней.

2. Воспользовавшись определителем, попробуйте самостоятельно определить вид какого-либо растения или животного.

ПОДСКАЗКА . Принцип определения состоит в том, что сначала устанавливается самый высокий иерархический таксон, затем переходят к следующему, и так до уровня вида. Например, нам надо определить пойманного шмеля. Мы знаем, что это животное (царство Животные); из зоологии вспомним, что членистоногое (тип Членистоногие) и насекомое (класс Насекомые). А вот дальше может понадобиться определитель, чтобы выяснить, к какому отряду (Перепончатокрылые), семейству (Пчелиные), роду (шмель) и виду (например, каменный шмель) относится пойманное насекомое.

Любой определитель состоит из определительных таблиц, которые построены на основе противопоставления: тезы, в которой перечисляются специфические признаки вида или группы видов (род, семейство и т. д.), и антитезы, где приводятся противоположные признаки. Каждая теза имеет номер, а в скобках указан номер антитезы. Если признаки организма соответствуют тезе, то надо внимательно прочитать антитезу и убедиться, что приведенные в ней признаки к определяемому организму не подходят, и переходить к следующей по порядку тезе. Если же признаки соответствуют антитезе, то дальнейшее определение надо вести от нее. Так следует поступать до тех пор, пока теза или антитеза не завершится названием таксона. Для таксонов каждого иерархического уровня приведены свои таблицы. Например, при определении упоминавшегося выше шмеля сначала надо воспользоваться таблицей для определения отрядов насекомых, затем семейств отряда Перепончатокрылые, затем родов семейства Пчелиные и завершить определение таблицей для видов рода шмель.

Литература для дополнительного чтения

  1. Новиков В. С., Школьный атлас-определитель высших растений / В. С. Новиков, И. А. Губанов. - М.: Просвещение, 1991.

3. Личинки многих видов животных совершенно непохожи на взрослых особей. Предложите методы, с помощью которых можно было бы правильно определить вид найденной личинки.

ПОДСКАЗКА . На помощь приходят методы молекулярной биологии. Было установлено, что последовательность нуклеотидов в ДНК геномов разных особей различается. Причем чем выше степень родства, тем различия меньше. Так, внутривидовые различия гораздо меньше, чем межвидовые, а различия между видами одного рода будут меньше, чем у видов, относящихся к разным родам, и т. д. Эту особенность организации генома стали использовать как в систематике, так и для выяснения степени родства между видами - филогении. Анализируется не целый геном, а отдельные его участки, гены или даже их фрагменты. Если последовательность нуклеотидов в выбранном нами гене личинки будет соответствовать последовательности нуклеотидов в том же гене взрослой особи, то можно заключить, что и личинка, и взрослая особь принадлежат к одному виду.

Биологическая систематика построена на принципе иерархичности. Название вида бинарное. Определить систематическое положение (вид, род и т. д.) любого организма можно при помощи определителя, принцип работы с которым сводится к сопоставлению тезы и антитезы. В современной биологии для видовой идентификации широко используют методы молекулярной биологии.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту