เคล็ดลับการสร้างและปรับปรุง


บทความนี้ได้รวบรวม ตารางของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์. ก่อนอื่นเราให้ตารางค่าพื้นฐานของฟังก์ชันตรีโกณมิตินั่นคือตารางไซน์โคไซน์แทนเจนต์และโคแทนเจนต์ของมุม 0, 30, 45, 60, 90, ..., 360 องศา ( 0, π/6, π/4, π/3, π/2, …, 2πเรเดียน). หลังจากนั้นเราจะให้ตารางไซน์และโคไซน์รวมถึงตารางแทนเจนต์และโคแทนเจนต์โดย V. M. Bradis และแสดงวิธีใช้ตารางเหล่านี้เมื่อค้นหาค่าของฟังก์ชันตรีโกณมิติ

การนำทางหน้า

ตารางของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์สำหรับมุม 0, 30, 45, 60, 90, ... องศา

บรรณานุกรม.

  • พีชคณิต: Proc. สำหรับ 9 เซลล์ เฉลี่ย โรงเรียน / ยู. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; เอ็ด S. A. Telyakovsky.- M.: การตรัสรู้, 1990.- 272 p.: Ill.- ISBN 5-09-002727-7
  • Bashmakov M.I.พีชคณิตและจุดเริ่มต้นของการวิเคราะห์: Proc. สำหรับ 10-11 เซลล์ เฉลี่ย โรงเรียน - ครั้งที่ 3 - ม.: ตรัสรู้, 2536. - 351 น.: ป่วย. - ไอเอสบีเอ็น 5-09-004617-4
  • พีชคณิตและจุดเริ่มต้นของการวิเคราะห์: Proc. สำหรับ 10-11 เซลล์ การศึกษาทั่วไป สถาบัน / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn และคนอื่น ๆ ; เอ็ด A. N. Kolmogorova.- 14th ed.- M.: การตรัสรู้, 2004.- 384 p.: Ill.- ISBN 5-09-013651-3
  • Gusev V. A. , Mordkovich A. G.คณิตศาสตร์ (คู่มือสำหรับผู้สมัครเข้าโรงเรียนเทคนิค): Proc. เบี้ยเลี้ยง.- ม.; สูงกว่า ร.ร. 2527-351 น.
  • แบรดดิส วี.เอ็ม.ตารางคณิตศาสตร์สี่หลัก: สำหรับการศึกษาทั่วไป หนังสือเรียน สถานประกอบการ - ครั้งที่ 2 - M.: Bustard, 1999.- 96 p.: ill. ISBN 5-7107-2667-2

ตารางค่าของ sines (sin), cosines (cos), tangents (tg), cotangents (ctg) เป็นเครื่องมือที่ทรงพลังและมีประโยชน์ที่ช่วยแก้ปัญหามากมายทั้งทางทฤษฎีและทางประยุกต์ ในบทความนี้ เราจะจัดเตรียมตารางฟังก์ชันตรีโกณมิติพื้นฐาน (ไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์) สำหรับมุม 0, 30, 45, 60, 90, ..., 360 องศา (0, π 6 , π 3 , π 2 , . . . , 2 π เรเดียน). ตาราง Bradis แยกสำหรับไซน์และโคไซน์ แทนเจนต์ และโคแทนเจนต์จะแสดงพร้อมคำอธิบายวิธีใช้เพื่อค้นหาค่าของฟังก์ชันตรีโกณมิติพื้นฐาน

ตารางฟังก์ชันตรีโกณมิติพื้นฐานสำหรับมุม 0, 30, 45, 60, 90, ..., 360 องศา

ตามคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ คุณสามารถค้นหาค่าของฟังก์ชันเหล่านี้สำหรับมุม 0 และ 90 องศา

บาป 0 = 0 , cos 0 = 1 , t g 0 = 0 , โคแทนเจนต์ของศูนย์ - ไม่ได้กำหนดไว้

sin 90 ° = 1 , cos 90 ° = 0 , โดยที่ t g 90 ° = 0 , ไม่ได้กำหนดแทนเจนต์เก้าสิบองศา

ค่าของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ในเส้นทางเรขาคณิตถูกกำหนดให้เป็นอัตราส่วนของด้านข้างของสามเหลี่ยมมุมฉากซึ่งมีมุม 30, 60 และ 90 องศาและ 45, 45 และ 90 องศา .

นิยามของฟังก์ชันตรีโกณมิติสำหรับมุมแหลมในรูปสามเหลี่ยมมุมฉาก

ไซนัสคืออัตราส่วนของขาตรงข้ามกับด้านตรงข้ามมุมฉาก

โคไซน์คืออัตราส่วนของขาที่อยู่ติดกันต่อด้านตรงข้ามมุมฉาก

แทนเจนต์- อัตราส่วนของขาตรงข้ามกับขาที่อยู่ติดกัน

โคแทนเจนต์- อัตราส่วนของขาที่อยู่ติดกันกับด้านตรงข้าม

ตามคำจำกัดความจะพบค่าของฟังก์ชัน:

บาป 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 , บาป 45 ° = 2 2 , cos 45 ° = 2 2 , t g 45 ° = 1 , c t g 45 ° = 1 , บาป 60 ° = 3 2 , cos 45 ° = 1 2 , t g 45 ° = 3 , c t g 45 ° = 3 3

มาสรุปค่าเหล่านี้ในตารางและเรียกมันว่าตารางค่าพื้นฐานของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์

ตารางค่าพื้นฐานของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์

α ° 0 30 45 60 90
บาป 0 1 2 2 2 3 2 1
cosα 1 3 2 2 2 1 2 0
tgα 0 3 3 1 3 ไม่ได้กำหนด
c t g ไม่ได้กำหนด 3 1 3 3 0
α , r a d ฉัน n 0 พาย6 π 4 π 3 π 2

คุณสมบัติที่สำคัญอย่างหนึ่งของฟังก์ชันตรีโกณมิติคือคาบ ตามคุณสมบัตินี้ ตารางนี้สามารถขยายได้โดยใช้สูตรการแคสต์ ด้านล่างเรานำเสนอตารางค่าของฟังก์ชันตรีโกณมิติหลักสำหรับมุม 0, 30, 60, ..., 120, 135, 150, 180, ..., 360 องศา (0, π 6, π 3, π 2, . . . , 2 pi เรเดียน).

ตารางของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์

α ° 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
บาป 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0
cosα 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0 1 2 2 2 3 2 1
tgα 0 3 3 1 3 - - 1 - 3 3 0 0 3 3 1 3 - - 3 - 1 0
c t g - 3 1 3 3 0 - 3 3 - 1 - 3 - 3 1 3 3 0 - 3 3 - 1 - 3 -
α , r a d ฉัน n 0 พาย6 π 4 π 3 π 2 2 ปี 3 3 π 4 5 ปี่ 6 π 7 ปี่ 6 5 ปี 4 4 ปี 3 3 ปี 2 5 ปี 3 7 ปี 4 11 ปี่ 6 2 ปี่

ความเป็นคาบของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ ช่วยให้คุณขยายตารางนี้เป็นมุมขนาดใหญ่ได้ตามอำเภอใจ ค่าที่รวบรวมไว้ในตารางมักใช้ในการแก้ปัญหา ดังนั้นจึงแนะนำให้เรียนรู้ด้วยใจ

วิธีใช้ตารางค่าพื้นฐานของฟังก์ชันตรีโกณมิติ

หลักการใช้ตารางค่าของไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์มีความชัดเจนในระดับที่เข้าใจง่าย จุดตัดของแถวและคอลัมน์ให้ค่าฟังก์ชันสำหรับมุมใดมุมหนึ่ง

ตัวอย่าง. วิธีใช้ตารางไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์

คุณต้องค้นหาว่าบาป 7 π 6 เท่ากับ .อะไร

เราพบคอลัมน์ในตาราง ค่าของเซลล์สุดท้ายซึ่งเท่ากับ 7 π 6 เรเดียน - เท่ากับ 210 องศา จากนั้นเราเลือกเงื่อนไขของตารางที่แสดงค่าของไซน์ ที่จุดตัดของแถวและคอลัมน์ เราพบค่าที่ต้องการ:

บาป 7 π 6 \u003d - 1 2

โต๊ะ Bradis

ตาราง Bradis ช่วยให้คุณคำนวณค่าของไซน์ โคไซน์ แทนเจนต์ หรือโคแทนเจนต์ได้อย่างแม่นยำถึงทศนิยม 4 ตำแหน่งโดยไม่ต้องใช้เทคโนโลยีคอมพิวเตอร์ นี่เป็นการทดแทนเครื่องคิดเลขทางวิศวกรรมชนิดหนึ่ง

อ้างอิง

Vladimir Modestovich Bradis (1890 - 1975) - นักคณิตศาสตร์และครูโซเวียตตั้งแต่ปี 1954 เป็นสมาชิกที่สอดคล้องกันของ APS ของสหภาพโซเวียต ตารางลอการิทึมสี่หลักและปริมาณตรีโกณมิติธรรมชาติ พัฒนาโดย Bradis ปรากฏครั้งแรกในปี 1921

อันดับแรก เราให้ตาราง Bradys สำหรับไซน์และโคไซน์ ช่วยให้คำนวณค่าโดยประมาณของฟังก์ชันเหล่านี้ได้อย่างแม่นยำสำหรับมุมที่มีจำนวนองศาและนาทีเป็นจำนวนเต็ม คอลัมน์ซ้ายสุดของตารางแสดงองศา ขณะที่แถวบนสุดแสดงนาที โปรดทราบว่าค่าทั้งหมดของมุมตารางของ Bradys มีค่าเป็นทวีคูณของหกนาที

ตาราง Bradis สำหรับไซน์และโคไซน์

บาป 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" cos 1" 2" 3"
0.0000 90°
0.0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 0523 87° 3 6 9
0523 0541 0558 0576 0593 0610 0628 0645 0663 0680 0698 86° 3 6 9
0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 0.0872 85° 3 6 9
5 ° 0.0872 0889 0906 0924 0941 0958 0976 0993 1011 1028 1045 84° 3 6 9
1045 1063 1080 1097 1115 1132 1149 1167 1184 1201 1219 83° 3 6 9
1219 1236 1253 1271 1288 1305 1323 1340 1357 1374 1392 82° 3 6 9
1392 1409 1426 1444 1461 1478 1495 1513 1530 1547 1564 81° 3 6 9
1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 0.1736 80 ° 3 6 9
10° 0.1736 1754 1771 1788 1805 1822 1840 1857 1874 1891 1908 79° 3 6 9
11° 1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 2079 78° 3 6 9
12° 2079 2096 2113 2130 2147 2164 2181 2198 2215 2233 2250 77° 3 6 9
13° 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 2419 76° 3 6 8
14° 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 0.2588 75° 3 6 8
15° 0.2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 2756 74° 3 6 8
16° 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 2924 73° 3 6 8
17° 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3090 72° 3 6 8
18° 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 3256 71° 3 6 8
19° 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 0.3420 70 องศา 3 5 8
20° 0.3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3584 69° 3 5 8
21° 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 3746 68° 3 5 8
22° 3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3907 67° 3 5 8
23° 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4067 66° 3 5 8
24° 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 0.4226 65° 3 5 8
25° 0.4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 4384 64° 3 5 8
26° 4384 4399 4415 4431 4446 4462 4478 4493 4509 4524 4540 63° 3 5 8
27° 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 4695 62° 3 5 8
28° 4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 4848 61° 3 5 8
29° 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 0.5000 60° 3 5 8
30° 0.5000 5015 5030 5045 5060 5075 5090 5105 5120 5135 5150 59° 3 5 8
31° 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 5299 58° 2 5 7
32° 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 5446 57° 2 5 7
33° 5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 5592 56° 2 5 7
34° 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 0.5736 55° 2 5 7
35° 0.5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 0.5878 54° 2 5 7
36° 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 6018 53° 2 5 7
37° 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 6157 52° 2 5 7
38° 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 6293 51° 2 5 7
39° 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 0.6428 50° 2 4 7
40° 0.6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 6561 49° 2 4 7
41° 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 6691 48° 2 4 7
42° 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 6820 47° 2 4 6
43° 6820 6833 6845 6858 6871 6884 6896 8909 6921 6934 6947 46° 2 4 6
44° 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 0.7071 45 ° 2 4 6
45 ° 0.7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 7193 44° 2 4 6
46° 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 7314 43° 2 4 6
47° 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 7431 42° 2 4 6
48° 7431 7443 7455 7466 7478 7490 7501 7513 7524 7536 7547 41° 2 4 6
49° 7547 7559 7570 7581 7593 7604 7615 7627 7638 7649 0.7660 40° 2 4 6
50° 0.7660 7672 7683 7694 7705 7716 7727 7738 7749 7760 7771 39° 2 4 6
51° 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 7880 38° 2 4 5
52° 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 7986 37° 2 4 5
53° 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 8090 36° 2 3 5
54° 8090 8100 8111 8121 8131 8141 8151 8161 8171 8181 0.8192 35° 2 3 5
55° 0.8192 8202 8211 8221 8231 8241 8251 8261 8271 8281 8290 34° 2 3 5
56° 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 8387 33° 2 3 5
57° 8387 8396 8406 8415 8425 8434 8443 8453 8462 8471 8480 32° 2 3 5
58° 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 8572 31° 2 3 5
59° 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 0.8660 30° 1 3 4
60° 0.8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 8746 29° 1 3 4
61° 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 8829 28° 1 3 4
62° 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 8910 27° 1 3 4
63° 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 8988 26° 1 3 4
64° 8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 0.9063 25° 1 3 4
65° 0.9063 9070 9078 9085 9092 9100 9107 9114 9121 9128 9135 24° 1 2 4
66° 9135 9143 9150 9157 9164 9171 9178 9184 9191 9198 9205 23° 1 2 3
67° 9205 9212 9219 9225 9232 9239 9245 9252 9259 9256 9272 22° 1 2 3
68° 9272 9278 9285 9291 9298 9304 9311 9317 9323 9330 9336 21° 1 2 3
69° 9336 9342 9348 9354 9361 9367 9373 9379 9383 9391 0.9397 20° 1 2 3
70 องศา 9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 0.9455 19° 1 2 3
71° 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 9511 18° 1 2 3
72° 9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 9563 17° 1 2 3
73° 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 9613 16° 1 2 2
74° 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 0.9659 15° 1 2 2
75° 9659 9664 9668 9673 9677 9681 9686 9690 9694 9699 9703 14° 1 1 2
76° 9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 9744 13° 1 1 2
77° 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 9781 12° 1 1 2
78° 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 9816 11° 1 1 2
79° 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 0.9848 10° 1 1 2
80 ° 0.9848 9851 9854 9857 9860 9863 9866 9869 9871 9874 9877 0 1 1
81° 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 9903 0 1 1
82° 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 9925 0 1 1
83° 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 9945 0 1 1
84° 9945 9947 9949 9951 9952 9954 9956 9957 9959 9960 9962 5 ° 0 1 1
85° 9962 9963 9965 9966 9968 9969 9971 9972 9973 9974 9976 0 0 1
86° 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 0 0 0
87° 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 9994 0 0 0
88° 9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 0.9998 0 0 0
89° 9998 9999 9999 9999 9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0 0
90° 1.0000
บาป 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" cos 1" 2" 3"

ในการหาค่าของไซน์และโคไซน์ของมุมที่ไม่ได้แสดงในตาราง จำเป็นต้องใช้การแก้ไข

ตอนนี้เราให้ตาราง Bradys สำหรับแทนเจนต์และโคแทนเจนต์ ประกอบด้วยค่าแทนเจนต์ของมุมตั้งแต่ 0 ถึง 76 องศาและโคแทนเจนต์ของมุมตั้งแต่ 14 ถึง 90 องศา

ตาราง Bradis สำหรับแทนเจนต์และโคแทนเจนต์

tg 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" ctg 1" 2" 3"
0 90°
0,000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 0524 87° 3 6 9
0524 0542 0559 0577 0594 0612 0629 0647 0664 0682 0699 86° 3 6 9
0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 0,0875 85° 3 6 9
5 ° 0,0875 0892 0910 0928 0945 0963 0981 0998 1016 1033 1051 84° 3 6 9
1051 1069 1086 1104 1122 1139 1157 1175 1192 1210 1228 83° 3 6 9
1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 1405 82° 3 6 9
1405 1423 1441 1459 1477 1495 1512 1530 1548 1566 1584 81° 3 6 9
1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 0,1763 80 ° 3 6 9
10° 0,1763 1781 1799 1817 1835 1853 1871 1890 1908 1926 1944 79° 3 6 9
11° 1944 1962 1980 1998 2016 2035 2053 2071 2089 2107 2126 78° 3 6 9
12° 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 2309 77° 3 6 9
13° 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 2493 76° 3 6 9
14° 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 0,2679 75° 3 6 9
15° 0,2679 2698 2717 2736 2754 2773 2792 2811 2830 2849 2867 74° 3 6 9
16° 2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3057 73° 3 6 9
17° 3057 3076 3096 3115 3134 3153 3172 3191 3211 3230 3249 72° 3 6 10
18° 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3443 71° 3 6 10
19° 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 0,3640 70 องศา 3 7 10
20° 0,3640 3659 3679 3699 3719 3739 3759 3779 3799 3819 3839 69° 3 7 10
21° 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 4040 68° 3 7 10
22° 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 4245 67° 3 7 10
23° 4245 4265 4286 4307 4327 4348 4369 4390 4411 4431 4452 66° 3 7 10
24° 4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 0,4663 65° 4 7 11
25° 0,4663 4684 4706 4727 4748 4770 4791 4813 4834 4856 4877 64° 4 7 11
26° 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 5095 63° 4 7 11
27° 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 5317 62° 4 7 11
28° 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 5543 61° 4 8 11
29° 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 0,5774 60° 4 8 12
30° 0,5774 5797 5820 5844 5867 5890 5914 5938 5961 5985 6009 59° 4 8 12
31° 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 6249 58° 4 8 12
32° 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 6494 57° 4 8 12
33° 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 6745 56° 4 8 13
34° 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 0,7002 55° 4 9 13
35° 0,7002 7028 7054 7080 7107 7133 7159 7186 7212 7239 7265 54° 4 8 13
36° 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 7536 53° 5 9 14°
37° 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 7813 52° 5 9 14
38° 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 8098 51° 5 9 14
39° 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 0,8391 50° 5 10 15
40° 0,8391 8421 8451 8481 8511 8541 8571 8601 8632 8662 0,8693 49° 5 10 15
41° 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 9004 48° 5 10 16
42° 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 9325 47° 6 11 16
43° 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 0,9657 46° 6 11 17
44° 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 1,0000 45 ° 6 11 17
45 ° 1,0000 0035 0070 0105 0141 0176 0212 0247 0283 0319 0355 44° 6 12 18
46° 0355 0392 0428 0464 0501 0538 0575 0612 0649 0686 0724 43° 6 12 18
47° 0724 0761 0799 0837 0875 0913 0951 0990 1028 1067 1106 42° 6 13 19
48° 1106 1145 1184 1224 1263 1303 1343 1383 1423 1463 1504 41° 7 13 20
49° 1504 1544 1585 1626 1667 1708 1750 1792 1833 1875 1,1918 40° 7 14 21
50° 1,1918 1960 2002 2045 2088 2131 2174 2218 2261 2305 2349 39° 7 14 22
51° 2349 2393 2437 2482 2527 2572 2617 2662 2708 2753 2799 38° 8 15 23
52° 2799 2846 2892 2938 2985 3032 3079 3127 3175 3222 3270 37° 8 16 24
53° 3270 3319 3367 3416 3465 3514 3564 3613 3663 3713 3764 36° 8 16 25
54° 3764 3814 3865 3916 3968 4019 4071 4124 4176 4229 1,4281 35° 9 17 26
55° 1,4281 4335 4388 4442 4496 4550 4605 4659 4715 4770 4826 34° 9 18 27
56° 4826 4882 4938 4994 5051 5108 5166 5224 5282 5340 5399 33° 10 19 29
57° 5399 5458 5517 5577 5637 5697 5757 5818 5880 5941 6003 32° 10 20 30
58° 6003 6066 6128 6191 6255 6319 6383 6447 6512 6577 6643 31° 11 21 32
59° 6643 6709 6775 6842 6909 6977 7045 7113 7182 7251 1,7321 30° 11 23 34
60° 1,732 1,739 1,746 1,753 1,760 1,767 1,775 1,782 1,789 1,797 1,804 29° 1 2 4
61° 1,804 1,811 1,819 1,827 1,834 1,842 1,849 1,857 1,865 1,873 1,881 28° 1 3 4
62° 1,881 1,889 1,897 1,905 1,913 1,921 1,929 1,937 1,946 1,954 1,963 27° 1 3 4
63° 1,963 1,971 1,980 1,988 1,997 2,006 2,014 2,023 2,032 2,041 2,05 26° 1 3 4
64° 2,050 2,059 2,069 2,078 2,087 2,097 2,106 2,116 2,125 2,135 2,145 25° 2 3 5
65° 2,145 2,154 2,164 2,174 2,184 2,194 2,204 2,215 2,225 2,236 2,246 24° 2 3 5
66° 2,246 2,257 2,267 2,278 2,289 2,3 2,311 2,322 2,333 2,344 2,356 23° 2 4 5
67° 2,356 2,367 2,379 2,391 2,402 2,414 2,426 2,438 2,450 2,463 2,475 22° 2 4 6
68° 2,475 2,488 2,5 2,513 2,526 2,539 2,552 2,565 2,578 2,592 2,605 21° 2 4 6
69° 2,605 2,619 2,633 2,646 2,66 2,675 2,689 2,703 2,718 2,733 2,747 20° 2 5 7
70 องศา 2,747 2,762 2,778 2,793 2,808 2,824 2,840 2,856 2,872 2,888 2,904 19° 3 5 8
71° 2,904 2,921 2,937 2,954 2,971 2,989 3,006 3,024 3,042 3,06 3,078 18° 3 6 9
72° 3,078 3,096 3,115 3,133 3,152 3,172 3,191 3,211 3,230 3,251 3,271 17° 3 6 10
73° 3,271 3,291 3,312 3,333 3,354 3,376 3 7 10
3,398 3,42 3,442 3,465 3,487 16° 4 7 11
74° 3,487 3,511 3,534 3,558 3,582 3,606 4 8 12
3,630 3,655 3,681 3,706 3,732 15° 4 8 13
75° 3,732 3,758 3,785 3,812 3,839 3,867 4 9 13
3,895 3,923 3,952 3,981 4,011 14° 5 10 14
tg 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" ctg 1" 2" 3"

วิธีใช้โต๊ะ Bradys

พิจารณาตาราง Bradys สำหรับไซน์และโคไซน์ ทุกอย่างที่เกี่ยวข้องกับไซนัสอยู่ที่ด้านบนและด้านซ้าย ถ้าเราต้องการโคไซน์ เราจะดูที่ด้านขวาล่างของตาราง

ในการหาค่าของไซน์ของมุม คุณต้องหาจุดตัดของแถวที่มีจำนวนองศาที่ต้องการในเซลล์ด้านซ้ายสุดและคอลัมน์ที่มีจำนวนนาทีในเซลล์ด้านบน

หากค่ามุมที่แน่นอนไม่อยู่ในตาราง Bradis เราจะใช้วิธีแก้ไข การแก้ไขสำหรับหนึ่ง สอง และสามนาทีจะแสดงในคอลัมน์ขวาสุดของตาราง ในการหาค่าไซน์ของมุมที่ไม่อยู่ในตาราง เราจะหาค่าที่ใกล้เคียงที่สุด หลังจากนั้นเราบวกหรือลบการแก้ไขที่สอดคล้องกับความแตกต่างระหว่างมุม

หากเรากำลังมองหาไซน์ของมุมที่มากกว่า 90 องศา ขั้นแรกเราจำเป็นต้องใช้สูตรการรีดิวซ์และจากนั้น - ตาราง Bradis

ตัวอย่าง. วิธีใช้ตาราง Bradis

ให้จำเป็นต้องหาค่าไซน์ของมุม 17 ° 44 " จากตาราง เราจะพบว่าค่าไซน์คือ 17 ° 42" และเพิ่มค่าแก้ไขเป็นเวลาสองนาที:

17° 44" - 17° 42" = 2" (ต้องการไอออนที่ถูกต้อง) บาป 17° 44" = 0 3040 + 0 . 0006 = 0 . 3046

หลักการทำงานกับโคไซน์ แทนเจนต์ และโคแทนเจนต์นั้นคล้ายคลึงกัน อย่างไรก็ตาม สิ่งสำคัญคือต้องจำเครื่องหมายของการแก้ไข

สำคัญ!

เมื่อคำนวณค่าของไซน์ การแก้ไขจะมีเครื่องหมายบวก และเมื่อคำนวณโคไซน์ การแก้ไขจะต้องใช้เครื่องหมายลบ

หากคุณสังเกตเห็นข้อผิดพลาดในข้อความ โปรดไฮไลต์แล้วกด Ctrl+Enter

ตารางฟังก์ชันตรีโกณมิติพื้นฐานสำหรับมุม 0, 30, 45, 60, 90, ... องศา

จากนิยามตรีโกณมิติของฟังก์ชัน $\sin$, $\cos$, $\tan$ และ $\cot$ เราสามารถหาค่าของมุม $0$ และ $90$ องศาได้:

$\sin⁡0°=0$, $\cos0°=1$, $\tan 0°=0$, $\cot 0°$ ไม่ได้กำหนดไว้;

$\sin90°=1$, $\cos90°=0$, $\cot90°=0$, $\tan 90°$ ไม่ได้กำหนดไว้

ในหลักสูตรเรขาคณิตของโรงเรียน เมื่อศึกษาสามเหลี่ยมมุมฉาก จะพบฟังก์ชันตรีโกณมิติของมุม $0°$, $30°$, $45°$, $60°$ และ $90°$

ค่าที่พบของฟังก์ชันตรีโกณมิติสำหรับมุมที่ระบุเป็นองศาและเรเดียนตามลำดับ ($0$, $\frac(\pi)(6)$, $\frac(\pi)(4)$, $\frac(\ pi)(3) $, $\frac(\pi)(2)$) เพื่อความสะดวกในการท่องจำและใช้งาน จะถูกป้อนลงในตารางที่ชื่อว่า ตารางตรีโกณมิติ, ตารางค่าพื้นฐานของฟังก์ชันตรีโกณมิติฯลฯ

เมื่อใช้สูตรการลดขนาด ตารางตรีโกณมิติสามารถขยายเป็นมุม 360°$ และ $2\pi$ เรเดียนตามลำดับ:

การใช้คุณสมบัติคาบของฟังก์ชันตรีโกณมิติ แต่ละมุมที่แตกต่างจากที่ทราบอยู่แล้วโดย $360°$ สามารถคำนวณและบันทึกลงในตารางได้ ตัวอย่างเช่น ฟังก์ชันตรีโกณมิติสำหรับมุม $0°$ จะมีค่าเท่ากันสำหรับมุม $0°+360°$ และสำหรับมุม $0°+2 \cdot 360°$ และสำหรับมุม $0°+3 \ cdot 360°$ และอื่นๆ

การใช้ตารางตรีโกณมิติ คุณสามารถกำหนดค่าของทุกมุมของวงกลมหนึ่งหน่วยได้

ในหลักสูตรเรขาคณิตของโรงเรียน ควรจะจดจำค่าพื้นฐานของฟังก์ชันตรีโกณมิติที่รวบรวมไว้ในตารางตรีโกณมิติเพื่อความสะดวกในการแก้ปัญหาเกี่ยวกับวิชาตรีโกณมิติ

การใช้โต๊ะ

ในตาราง ก็เพียงพอที่จะค้นหาฟังก์ชันตรีโกณมิติที่จำเป็นและค่าของมุมหรือเรเดียนที่ต้องการคำนวณฟังก์ชันนี้ ที่จุดตัดของแถวที่มีฟังก์ชันและคอลัมน์ที่มีค่า เราจะได้ค่าที่ต้องการของฟังก์ชันตรีโกณมิติของอาร์กิวเมนต์ที่กำหนด

ในรูป คุณสามารถดูวิธีการหาค่า $\cos⁡60°$ ซึ่งเท่ากับ $\frac(1)(2)$

ใช้ตารางตรีโกณมิติแบบขยายในทำนองเดียวกัน ข้อดีของการใช้งานคือ ดังที่ได้กล่าวไปแล้ว การคำนวณฟังก์ชันตรีโกณมิติของเกือบทุกมุม ตัวอย่างเช่น คุณสามารถหาค่า $\tan 1 380°=\tan (1 380°-360°)=\tan(1 020°-360°)=\tan(660°-360°)=\tan300 ได้อย่างง่ายดาย °$:

ตาราง Bradis ของฟังก์ชันตรีโกณมิติพื้นฐาน

ความสามารถในการคำนวณฟังก์ชันตรีโกณมิติของค่ามุมใดๆ ก็ตามสำหรับค่าจำนวนเต็มขององศาและค่าจำนวนเต็มเป็นนาทีทำให้สามารถใช้ตาราง Bradis ได้ ตัวอย่างเช่น ค้นหาค่า $\cos⁡34°7"$ ตารางแบ่งออกเป็น 2 ส่วนคือ ตารางค่า $\sin$ และ $\cos$ และตารางของ $\tan$ และ $\ ค่า cot$

ตาราง Bradis ทำให้สามารถรับค่าฟังก์ชันตรีโกณมิติโดยประมาณได้อย่างแม่นยำด้วยตำแหน่งทศนิยม 4 ตำแหน่ง

การใช้ตาราง Bradis

โดยใช้ตารางของ Bradys สำหรับไซน์ เราจะพบ $\sin⁡17°42"$ ในการทำเช่นนี้ ในคอลัมน์ทางด้านซ้ายของตารางไซน์และโคไซน์ เราจะหาค่าขององศา - $17°$ และใน บรรทัดบนสุด เราพบค่าของนาที - $42"$ ที่ทางแยกเราได้รับค่าที่ต้องการ:

$\sin17°42"=0.304$.

หากต้องการหาค่าของ $\sin17°44"$ คุณต้องใช้การแก้ไขที่ด้านขวาของตาราง ในกรณีนี้ คุณต้องเพิ่มค่าของ $42"$ ซึ่งอยู่ในตาราง การแก้ไขสำหรับ $2"$ ซึ่งเท่ากับ $0.0006$ เราได้รับ:

$\sin17°44"=0.304+0.0006=0.3046$.

ในการหาค่าของ $\sin17°47"$ เรายังใช้การแก้ไขทางด้านขวาของตาราง เฉพาะในกรณีนี้ เราจะนำค่าของ $\sin17°48"$ เป็นพื้นฐานแล้วลบค่าแก้ไขของ $1"$:

$\sin17°47"=0.3057-0.0003=0.3054$.

เมื่อคำนวณโคไซน์ เราทำการกระทำที่คล้ายกัน แต่เราดูที่องศาในคอลัมน์ขวาและนาทีในคอลัมน์ด้านล่างของตาราง ตัวอย่างเช่น $\cos20°=0.9397$

ไม่มีการแก้ไขค่าแทนเจนต์สูงถึง $90°$ และโคแทนเจนต์มุมเล็ก ตัวอย่างเช่น ลองหา $\tan 78°37"$ ซึ่งตามตารางคือ $4,967$

ในบทความเราจะเข้าใจอย่างถ่องแท้ว่าหน้าตาเป็นอย่างไร ตารางค่าตรีโกณมิติ ไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์. พิจารณาค่าพื้นฐานของฟังก์ชันตรีโกณมิติ จากมุม 0,30,45,60,90,...,360 องศา และมาดูวิธีการใช้ตารางเหล่านี้ในการคำนวณค่าของฟังก์ชันตรีโกณมิติกัน
พิจารณาก่อน ตารางโคไซน์ ไซน์ แทนเจนต์ และโคแทนเจนต์จากมุม 0, 30, 45, 60, 90,.. องศา คำจำกัดความของปริมาณเหล่านี้ทำให้สามารถกำหนดค่าฟังก์ชันของมุม 0 และ 90 องศาได้:

บาป 0 0 \u003d 0, cos 0 0 \u003d 1. tg 0 0 \u003d 0, โคแทนเจนต์ของ 0 0 จะไม่แน่นอน
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0, แทนเจนต์ของ 90 0 จะไม่ถูกกำหนด

ถ้าเราเอาสามเหลี่ยมมุมฉากที่มีมุมตั้งแต่ 30 ถึง 90 องศา เราได้รับ:

บาป 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
บาป 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
บาป 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3, ctg 60 0 = √3/3

เราแสดงค่าที่ได้รับทั้งหมดในรูปแบบ ตารางตรีโกณมิติ:

ตารางของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์!

หากเราใช้สูตรลดตารางของเราจะเพิ่มขึ้นค่าสำหรับมุมสูงถึง 360 องศาจะถูกเพิ่ม จะมีลักษณะดังนี้:

ตารางจะเพิ่มขึ้นตามคุณสมบัติของคาบหากเราแทนที่มุมด้วย 0 0 +360 0 *z .... 330 0 +360 0 *z โดยที่ z เป็นจำนวนเต็ม ในตารางนี้ เป็นไปได้ที่จะคำนวณค่าของมุมทั้งหมดที่สอดคล้องกับจุดในวงกลมเดียว

มาดูวิธีการใช้ตารางในการแก้ปัญหากันอย่างชัดเจน
ทุกอย่างง่ายมาก เนื่องจากค่าที่เราต้องการจะอยู่ที่จุดตัดกันของเซลล์ที่เราต้องการ ตัวอย่างเช่น ลอง cos ของมุม 60 องศา ในตารางจะมีลักษณะดังนี้:

ในตารางสุดท้ายของค่าหลักของฟังก์ชันตรีโกณมิติ เราดำเนินการในลักษณะเดียวกัน แต่ในตารางนี้ เป็นไปได้ที่จะหาว่าค่าแทนเจนต์จากมุม 1,020 องศาจะเป็นเท่าไหร่ = -√3 ลองดู 1020 0 = 300 0 +360 0 *2 มาหาโต๊ะกันเถอะ

ใช้การค้นหาค่ามุมตรีโกณมิติที่แม่นยำเป็นนาทีมากขึ้น คำแนะนำโดยละเอียดเกี่ยวกับวิธีการใช้งานในหน้า

โต๊ะแบรดดิส สำหรับไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์

ตารางของ Bradys แบ่งออกเป็นหลายส่วน ประกอบด้วยตารางของโคไซน์และไซน์ แทนเจนต์และโคแทนเจนต์ ซึ่งแบ่งออกเป็นสองส่วน (tg ของมุมสูงสุด 90 องศาและ ctg ของมุมเล็ก)

ไซน์และโคไซน์

มุม tg เริ่มต้นจาก 0 0 สิ้นสุด 76 0 มุม ctg เริ่มต้นจาก 14 0 สิ้นสุด 90 0

tg สูงถึง 90 0 และ ctg มุมเล็ก ๆ

มาดูวิธีการใช้ตาราง Bradis ในการแก้ปัญหากัน

หาค่ากำหนดบาปกัน (กำหนดในคอลัมน์จากขอบด้านซ้าย) 42 นาที (กำหนดอยู่บรรทัดบนสุด) โดยการข้ามเรากำลังหาการกำหนด มันคือ = 0.3040

ค่าของนาทีจะถูกระบุด้วยช่วงเวลาหกนาที เกิดอะไรขึ้นถ้าค่าที่เราต้องการอยู่ภายในช่วงเวลานี้ ลองใช้เวลา 44 นาทีและมีเพียง 42 ในตารางเท่านั้น เราใช้ 42 เป็นพื้นฐานและใช้คอลัมน์เพิ่มเติมทางด้านขวาแก้ไขครั้งที่ 2 และเพิ่มเป็น 0.3040 + 0.0006 เราได้ 0.3046

ด้วยบาป 47 นาที เราใช้เวลา 48 นาทีเป็นพื้นฐาน และลบ 1 การแก้ไขออกจากค่านั้น นั่นคือ 0.3057 - 0.0003 = 0.3054

เมื่อคำนวณ cos เราทำงานคล้ายกับบาป เพียงแต่เราเอาแถวล่างของตารางเป็นฐาน ตัวอย่างเช่น cos 20 0 = 0.9397

ค่า tg ของมุมสูงถึง 90 0 และมุมเล็ก ๆ นั้นถูกต้องและไม่มีการแก้ไขในนั้น ตัวอย่างเช่น ค้นหา tg 78 0 37min = 4.967


และ ctg 20 0 13 นาที = 25.83

ที่นี่เราได้พิจารณาตารางตรีโกณมิติหลักแล้ว เราหวังว่าข้อมูลนี้จะเป็นประโยชน์อย่างยิ่งสำหรับคุณ คำถามของคุณบนโต๊ะ หากมี อย่าลืมเขียนในความคิดเห็น!

หมายเหตุ: กันชนผนัง - แผ่นกันชนสำหรับปกป้องผนัง (http://www.spi-polymer.ru/otboyniki/)

พูดง่ายๆ ก็คือ ผักที่ปรุงในน้ำตามสูตรพิเศษ ฉันจะพิจารณาสององค์ประกอบเริ่มต้น (สลัดผักและน้ำ) และผลลัพธ์ที่ได้คือ Borscht ในเชิงเรขาคณิต นี่สามารถแสดงเป็นรูปสี่เหลี่ยมผืนผ้าโดยที่ด้านหนึ่งหมายถึงผักกาดหอม อีกด้านหนึ่งหมายถึงน้ำ ผลรวมของทั้งสองข้างนี้จะแสดงถึง Borscht เส้นทแยงมุมและพื้นที่ของสี่เหลี่ยมผืนผ้า "บอร์ชท์" เป็นแนวคิดทางคณิตศาสตร์ล้วนๆ และไม่เคยใช้ในสูตรบอร์ชท์


ผักกาดหอมและน้ำกลายเป็น Borscht ในแง่ของคณิตศาสตร์ได้อย่างไร ผลรวมของสองส่วนจะกลายเป็นตรีโกณมิติได้อย่างไร? เพื่อให้เข้าใจสิ่งนี้ เราจำเป็นต้องมีฟังก์ชันมุมเชิงเส้น


คุณจะไม่พบอะไรเกี่ยวกับฟังก์ชันมุมเชิงเส้นในหนังสือเรียนคณิตศาสตร์ แต่หากไม่มีพวกเขา ก็ไม่มีคณิตศาสตร์ กฎของคณิตศาสตร์ เช่นเดียวกับกฎธรรมชาติ ทำงานไม่ว่าเราจะรู้ว่ามีอยู่จริงหรือไม่ก็ตาม

ฟังก์ชันเชิงมุมเชิงเส้นคือกฎของการบวกดูว่าพีชคณิตเปลี่ยนเป็นเรขาคณิตได้อย่างไร และเรขาคณิตเปลี่ยนเป็นตรีโกณมิติได้อย่างไร

เป็นไปได้ไหมที่จะทำโดยไม่มีฟังก์ชันเชิงมุมเชิงเส้น? คุณสามารถทำได้เพราะนักคณิตศาสตร์ยังคงจัดการได้โดยไม่มีพวกเขา เคล็ดลับของนักคณิตศาสตร์อยู่ที่การที่พวกเขามักจะบอกเราเกี่ยวกับปัญหาที่พวกเขาแก้ได้ด้วยตัวเองเท่านั้น และไม่เคยบอกเราเกี่ยวกับปัญหาที่พวกเขาแก้ไม่ได้ ดู. หากเราทราบผลลัพธ์ของการบวกและเทอมหนึ่ง เราจะใช้การลบเพื่อหาอีกเทอมหนึ่ง ทุกอย่าง. เราไม่ทราบปัญหาอื่น ๆ และเราไม่สามารถแก้ไขได้ จะทำอย่างไรถ้าเรารู้เพียงผลลัพธ์ของการบวกและไม่รู้ทั้งสองคำ? ในกรณีนี้ ผลลัพธ์ของการบวกจะต้องแยกออกเป็นสองพจน์โดยใช้ฟังก์ชันเชิงมุมเชิงเส้น นอกจากนี้ เราเองก็เลือกพจน์หนึ่งที่สามารถเป็นได้ และฟังก์ชันเชิงมุมเชิงเส้นแสดงว่าเทอมที่สองควรเป็นเท่าใด เพื่อให้ผลลัพธ์ของการบวกกลายเป็นสิ่งที่เราต้องการอย่างแท้จริง สามารถมีจำนวนคู่ของเงื่อนไขดังกล่าวได้เป็นอนันต์ ในชีวิตประจำวัน เราทำได้ดีมากโดยไม่แบ่งแยกผลรวม การลบก็เพียงพอแล้วสำหรับเรา แต่ในการศึกษาทางวิทยาศาสตร์เกี่ยวกับกฎแห่งธรรมชาติ การขยายผลรวมเป็นเงื่อนไขนั้นมีประโยชน์มาก

กฎการบวกอีกข้อที่นักคณิตศาสตร์ไม่ชอบพูดถึง (เคล็ดลับอีกอย่างของพวกเขา) กำหนดให้เงื่อนไขต้องมีหน่วยวัดเหมือนกัน สำหรับผักกาดหอม น้ำ และบอร์ช อาจเป็นหน่วยน้ำหนัก ปริมาตร ต้นทุน หรือหน่วยวัด

รูปแสดงความแตกต่างสองระดับสำหรับคณิตศาสตร์ ระดับแรกคือความแตกต่างในด้านตัวเลขซึ่งระบุไว้ เอ, , . นี่คือสิ่งที่นักคณิตศาสตร์ทำ ระดับที่สองคือความแตกต่างในพื้นที่ของหน่วยวัดซึ่งแสดงในวงเล็บเหลี่ยมและระบุด้วยตัวอักษร ยู. นี่คือสิ่งที่นักฟิสิกส์ทำ เราสามารถเข้าใจระดับที่สาม - ความแตกต่างในขอบเขตของวัตถุที่อธิบายไว้ วัตถุที่แตกต่างกันสามารถมีจำนวนหน่วยวัดเท่ากันได้ เรื่องนี้สำคัญแค่ไหน เราสามารถเห็นได้จากตัวอย่างตรีโกณมิติ Borscht หากเราเพิ่มตัวห้อยลงในสัญกรณ์เดียวกันสำหรับหน่วยการวัดของวัตถุต่างๆ เราสามารถพูดได้อย่างชัดเจนว่าปริมาณทางคณิตศาสตร์ใดที่อธิบายวัตถุนั้น ๆ และการเปลี่ยนแปลงเมื่อเวลาผ่านไปหรือเกี่ยวข้องกับการกระทำของเราอย่างไร จดหมาย Wฉันจะทำเครื่องหมายน้ำด้วยตัวอักษร ฉันจะทำเครื่องหมายสลัดด้วยตัวอักษร บี- บอร์ช นี่คือหน้าตาของฟังก์ชันมุมเชิงเส้นของบอร์ชท์

ถ้าเรานำน้ำบางส่วนและบางส่วนของสลัดมารวมกันจะกลายเป็น Borscht หนึ่งเสิร์ฟ ที่นี่ฉันแนะนำให้คุณหยุดพักจาก Borscht และระลึกถึงวัยเด็กอันห่างไกลของคุณ จำได้ไหมว่าเราถูกสอนให้รวมกระต่ายกับเป็ดเข้าด้วยกันได้อย่างไร? จำเป็นต้องค้นหาว่าจะมีสัตว์กี่ตัว แล้วเราถูกสอนให้ทำอะไร? เราถูกสอนให้แยกหน่วยจากตัวเลขและบวกตัวเลข ใช่ คุณสามารถเพิ่มหมายเลขใด ๆ ลงในหมายเลขอื่นได้ นี่เป็นเส้นทางตรงสู่ความหมกหมุ่นของคณิตศาสตร์สมัยใหม่ - เราไม่เข้าใจว่าอะไร ไม่ชัดเจนว่าทำไม และเราเข้าใจได้ไม่ดีนักว่าสิ่งนี้เกี่ยวข้องกับความเป็นจริงอย่างไร เนื่องจากความแตกต่างสามระดับ นักคณิตศาสตร์จึงดำเนินการเพียงระดับเดียวเท่านั้น จะถูกต้องมากขึ้นในการเรียนรู้วิธีการย้ายจากหน่วยการวัดหนึ่งไปยังอีกหน่วยหนึ่ง

และกระต่าย เป็ด และสัตว์เล็กๆ ก็สามารถแบ่งได้เป็นชิ้นๆ หน่วยวัดทั่วไปหนึ่งหน่วยสำหรับวัตถุต่างๆ ช่วยให้เรารวมเข้าด้วยกันได้ นี่เป็นปัญหารุ่นเด็ก ลองดูปัญหาที่คล้ายกันสำหรับผู้ใหญ่ คุณจะได้อะไรเมื่อคุณเพิ่มกระต่ายและเงิน? มีวิธีแก้ไขที่เป็นไปได้สองวิธีที่นี่

ตัวเลือกแรก. เรากำหนดมูลค่าตลาดของกระต่ายและเพิ่มเป็นเงินสดที่มีอยู่ เราได้รับมูลค่ารวมของความมั่งคั่งของเราในแง่ของเงิน

ตัวเลือกที่สอง. คุณสามารถเพิ่มจำนวนกระต่ายในจำนวนธนบัตรที่เรามีได้ เราจะได้จำนวนสังหาริมทรัพย์เป็นชิ้นๆ

อย่างที่คุณเห็น กฎการบวกเดียวกันอนุญาตให้คุณได้ผลลัพธ์ที่แตกต่างกัน ทุกอย่างขึ้นอยู่กับสิ่งที่เราต้องการทราบ

แต่กลับไปที่ Borscht ของเรา ตอนนี้เราสามารถเห็นสิ่งที่จะเกิดขึ้นสำหรับค่าต่างๆ ของมุมของฟังก์ชันมุมเชิงเส้น

มุมเป็นศูนย์ มีสลัดแต่ไม่มีน้ำ เราไม่สามารถปรุง Borscht ได้ ปริมาณ Borscht ยังเป็นศูนย์ นี่ไม่ได้หมายความว่าศูนย์ Borscht เท่ากับศูนย์น้ำ Zero borsch สามารถเป็นศูนย์สลัดได้ (มุมขวา)


สำหรับฉันเป็นการส่วนตัว นี่คือข้อพิสูจน์หลักทางคณิตศาสตร์ว่า ศูนย์จะไม่เปลี่ยนหมายเลขเมื่อเพิ่ม นี่เป็นเพราะการเพิ่มตัวเองเป็นไปไม่ได้ถ้ามีเพียงหนึ่งเทอมและไม่มีเทอมที่สอง คุณสามารถเชื่อมโยงสิ่งนี้ได้ตามที่คุณต้องการ แต่จำไว้ - การดำเนินการทางคณิตศาสตร์ทั้งหมดที่มีศูนย์นั้นถูกคิดค้นโดยนักคณิตศาสตร์เอง ดังนั้นให้ทิ้งตรรกะของคุณและยัดเยียดคำจำกัดความที่นักคณิตศาสตร์คิดค้นขึ้นอย่างโง่เขลา: "การหารด้วยศูนย์เป็นไปไม่ได้", "จำนวนใด ๆ ที่คูณด้วยศูนย์ เท่ากับศูนย์" , "หลังจุดศูนย์" และเรื่องไร้สาระอื่นๆ พอจะจำได้เมื่อศูนย์ไม่ใช่ตัวเลขและคุณจะไม่มีคำถามว่าศูนย์เป็นจำนวนธรรมชาติหรือไม่เพราะคำถามดังกล่าวโดยทั่วไปจะสูญเสียความหมายทั้งหมด: เราจะพิจารณาตัวเลขที่ไม่ใช่ตัวเลขได้อย่างไร . มันเหมือนกับการถามว่าสีอะไรเป็นแอตทริบิวต์สีที่มองไม่เห็น การเพิ่มศูนย์ให้กับตัวเลขก็เหมือนกับการระบายสีที่ไม่มีอยู่จริง พวกเขาโบกแปรงแห้งและบอกทุกคนว่า "เราทาสีแล้ว" แต่ฉันพูดเพ้อเจ้อเล็กน้อย

มุมมีค่ามากกว่าศูนย์แต่น้อยกว่าสี่สิบห้าองศา ผักสลัดมีเยอะแต่น้ำน้อย เป็นผลให้เราได้รับ Borscht หนา

มุมคือสี่สิบห้าองศา เรามีน้ำและผักกาดหอมในปริมาณที่เท่ากัน นี่คือ Borscht ที่สมบูรณ์แบบ (ขอให้พ่อครัวยกโทษให้ฉันมันเป็นแค่คณิตศาสตร์)

มุมมีค่ามากกว่าสี่สิบห้าองศาแต่น้อยกว่าเก้าสิบองศา เรามีน้ำเยอะและผักกาดน้อย รับของเหลว Borscht

มุมฉาก. เรามีน้ำ เหลือแต่ความทรงจำของผักกาดหอม เมื่อเราวัดมุมจากเส้นที่เคยทำเครื่องหมายผักกาดหอมต่อไป เราไม่สามารถปรุง Borscht ได้ ปริมาณ Borscht เป็นศูนย์ ในกรณีนี้ให้ถือและดื่มน้ำในขณะที่มี)))

ที่นี่. บางอย่างเช่นนี้ ฉันสามารถเล่าเรื่องอื่น ๆ ที่นี่ที่จะเกินความเหมาะสมได้ที่นี่

เพื่อนทั้งสองมีส่วนแบ่งในธุรกิจร่วมกัน หลังจากการสังหารหนึ่งในนั้น ทุกสิ่งทุกอย่างก็ไปสู่อีกคนหนึ่ง

การเกิดขึ้นของคณิตศาสตร์บนโลกของเรา

เรื่องราวทั้งหมดนี้เล่าในภาษาของคณิตศาสตร์โดยใช้ฟังก์ชันเชิงมุมเชิงเส้น คราวหน้าผมจะแสดงให้คุณเห็นตำแหน่งที่แท้จริงของฟังก์ชันเหล่านี้ในโครงสร้างของคณิตศาสตร์ ในระหว่างนี้ ให้กลับไปที่ตรีโกณมิติของ Borscht และพิจารณาการคาดคะเน

วันเสาร์ที่ 26 ตุลาคม 2019

วันพุธที่ 7 สิงหาคม 2019

เมื่อจบการสนทนาเกี่ยวกับ เราต้องพิจารณาเซตอนันต์ ให้แนวคิดว่า "อินฟินิตี้" มีผลกับนักคณิตศาสตร์ เหมือนงูเหลือมบนกระต่าย ความน่ากลัวที่สั่นไหวของอินฟินิตี้ทำให้นักคณิตศาสตร์ขาดสามัญสำนึก นี่คือตัวอย่าง:

แหล่งที่มาเดิมตั้งอยู่ อัลฟ่าหมายถึงจำนวนจริง เครื่องหมายเท่ากับในนิพจน์ข้างต้นระบุว่าหากคุณเพิ่มตัวเลขหรืออนันต์ให้กับอนันต์ ไม่มีอะไรจะเปลี่ยนแปลง ผลลัพธ์จะเป็นอนันต์เดียวกัน หากเราใช้เซตจำนวนนับไม่ถ้วนเป็นตัวอย่าง ตัวอย่างที่พิจารณาสามารถแสดงได้ดังนี้:

เพื่อพิสูจน์กรณีของพวกเขาด้วยสายตา นักคณิตศาสตร์ได้คิดค้นวิธีการต่างๆ มากมาย โดยส่วนตัวแล้ว ฉันมองว่าวิธีการทั้งหมดนี้เป็นการเต้นรำของหมอผีกับรำมะนา โดยพื้นฐานแล้ว พวกเขาทั้งหมดมาจากความจริงที่ว่าห้องพักบางห้องไม่ได้ถูกครอบครองและมีแขกใหม่เข้ามาตั้งรกราก หรือแขกบางคนถูกโยนออกไปที่ทางเดินเพื่อให้มีที่ว่างสำหรับแขก (อย่างมนุษย์ปุถุชน) ฉันนำเสนอมุมมองของฉันเกี่ยวกับการตัดสินใจดังกล่าวในรูปแบบของเรื่องราวที่ยอดเยี่ยมเกี่ยวกับสาวผมบลอนด์ เหตุผลของฉันขึ้นอยู่กับอะไร? การย้ายผู้เข้าชมจำนวนไม่ จำกัด ต้องใช้เวลาเป็นอนันต์ หลังจากที่เราออกจากห้องพักแขกห้องแรกแล้ว ผู้มาเยี่ยมคนหนึ่งจะเดินไปตามทางเดินจากห้องของเขาไปยังห้องถัดไปจนกว่าจะหมดเวลา แน่นอนว่าปัจจัยด้านเวลาอาจถูกมองข้ามไปอย่างโง่เขลา แต่สิ่งนี้จะมาจากหมวดหมู่ของ "กฎหมายไม่ได้เขียนขึ้นสำหรับคนโง่" ทุกอย่างขึ้นอยู่กับสิ่งที่เรากำลังทำ: การปรับความเป็นจริงให้เป็นทฤษฎีทางคณิตศาสตร์หรือในทางกลับกัน

"โรงแรมไม่มีที่สิ้นสุด" คืออะไร? อินน์แบบอินฟินิตี้คือโรงแรมขนาดเล็กที่มีจำนวนตำแหน่งว่างเสมอ ไม่ว่าจะมีห้องว่างกี่ห้องก็ตาม หากห้องทั้งหมดในโถงทางเดินที่ไม่มีที่สิ้นสุด "สำหรับผู้มาเยี่ยม" ถูกครอบครอง มีโถงทางเดินที่ไม่มีที่สิ้นสุดอีกแห่งที่มีห้องสำหรับ "แขก" จะมีทางเดินดังกล่าวจำนวนไม่สิ้นสุด ในเวลาเดียวกัน "โรงแรมที่ไม่มีที่สิ้นสุด" มีจำนวนชั้นที่ไม่มีที่สิ้นสุดในอาคารจำนวนไม่สิ้นสุดบนดาวเคราะห์จำนวนอนันต์ในจักรวาลจำนวนอนันต์ที่สร้างขึ้นโดยพระเจ้าจำนวนอนันต์ ในทางกลับกัน นักคณิตศาสตร์ไม่สามารถย้ายออกจากปัญหาซ้ำซากจำเจในแต่ละวัน: พระเจ้าอัลลอฮ์ - พระพุทธเจ้าเป็นเพียงแห่งเดียวเสมอ โรงแรมเป็นหนึ่ง ทางเดินเป็นเพียงแห่งเดียว ดังนั้นนักคณิตศาสตร์จึงพยายามเล่นปาหี่เลขลำดับของห้องพักในโรงแรม ทำให้เราเชื่อว่าเป็นไปได้ที่จะ "ผลักห้องที่ยังไม่ได้ผลัก"

ฉันจะสาธิตตรรกะของการให้เหตุผลกับคุณโดยใช้ตัวอย่างชุดจำนวนธรรมชาติอนันต์ ก่อนอื่น คุณต้องตอบคำถามง่ายๆ ก่อน: มีชุดจำนวนธรรมชาติกี่ชุด - หนึ่งชุดหรือหลายชุด ไม่มีคำตอบที่ถูกต้องสำหรับคำถามนี้ เนื่องจากเราเป็นผู้คิดค้นตัวเลขขึ้นมาเอง จึงไม่มีตัวเลขในธรรมชาติ ใช่ ธรรมชาติรู้วิธีนับอย่างสมบูรณ์แบบ แต่สำหรับสิ่งนี้ เธอใช้เครื่องมือทางคณิตศาสตร์อื่นๆ ที่เราไม่คุ้นเคย ตามที่ธรรมชาติคิด ฉันจะบอกคุณอีกครั้ง เนื่องจากเราประดิษฐ์ตัวเลข เราเองจะเป็นผู้กำหนดจำนวนธรรมชาติที่มีอยู่จำนวนกี่ชุด พิจารณาทั้งสองทางเลือก เนื่องจากเหมาะสมกับนักวิทยาศาสตร์ตัวจริง

ตัวเลือกที่หนึ่ง "ให้เราได้รับ" ชุดตัวเลขธรรมชาติชุดเดียวที่วางอยู่บนหิ้งอย่างสงบ เรานำชุดนี้จากชั้นวาง แค่นั้นแหละ ไม่มีตัวเลขธรรมชาติอื่น ๆ เหลืออยู่บนหิ้งและไม่มีที่ไหนเลยที่จะนำไปใช้ เราไม่สามารถเพิ่มหนึ่งชุดในชุดนี้ เนื่องจากเรามีอยู่แล้ว ถ้าคุณต้องการจริงๆ? ไม่มีปัญหา. เราสามารถนำหน่วยจากชุดที่เราถ่ายไปแล้วกลับไปที่หิ้งได้ หลังจากนั้นเราสามารถนำหน่วยจากชั้นวางและเพิ่มไปยังสิ่งที่เราเหลือได้ เป็นผลให้เราได้รับชุดจำนวนธรรมชาติที่ไม่สิ้นสุดอีกครั้ง คุณสามารถเขียนการปรับเปลี่ยนทั้งหมดของเราดังนี้:

ฉันได้เขียนการดำเนินการในรูปแบบพีชคณิตและสัญกรณ์ทฤษฎีเซต โดยแสดงรายการองค์ประกอบของเซตอย่างละเอียด ตัวห้อยระบุว่าเรามีชุดตัวเลขธรรมชาติชุดเดียวเท่านั้น ปรากฎว่าชุดของจำนวนธรรมชาติจะไม่เปลี่ยนแปลงก็ต่อเมื่อถูกลบออกจากมันและเพิ่มจำนวนเดียวกัน

ตัวเลือกที่สอง เรามีชุดตัวเลขธรรมชาติมากมายหลายชุดบนหิ้ง ฉันขอเน้นย้ำว่า - แตกต่างแม้ว่าจะแยกไม่ออกก็ตาม เราใช้หนึ่งในชุดเหล่านี้ จากนั้นเราก็นำตัวเลขธรรมชาติชุดหนึ่งมาบวกกับชุดที่เราถ่ายไปแล้ว เรายังบวกจำนวนธรรมชาติสองชุดได้อีกด้วย นี่คือสิ่งที่เราได้รับ:

ตัวห้อย "หนึ่ง" และ "สอง" ระบุว่าองค์ประกอบเหล่านี้เป็นของชุดที่ต่างกัน ใช่ หากคุณเพิ่มชุดหนึ่งไปยังชุดที่ไม่มีที่สิ้นสุด ผลลัพธ์จะเป็นชุดที่ไม่มีที่สิ้นสุดด้วย แต่จะไม่เหมือนกับชุดเดิม หากมีการเพิ่มชุดอนันต์อื่นในชุดอนันต์ชุดหนึ่ง ผลลัพธ์จะเป็นชุดอนันต์ชุดใหม่ที่ประกอบด้วยองค์ประกอบของสองชุดแรก

ชุดของตัวเลขธรรมชาติใช้สำหรับการนับในลักษณะเดียวกับไม้บรรทัดสำหรับการวัด ทีนี้ลองนึกภาพว่าคุณได้บวกหนึ่งเซนติเมตรเข้ากับไม้บรรทัดแล้ว นี่จะเป็นบรรทัดอื่นแล้วไม่เท่ากับเส้นเดิม

คุณสามารถยอมรับหรือไม่ยอมรับเหตุผลของฉัน - นี่คือธุรกิจของคุณเอง แต่ถ้าคุณเคยเจอปัญหาทางคณิตศาสตร์ ลองคิดดูว่าคุณกำลังอยู่บนเส้นทางของการใช้เหตุผลผิดๆ หรือไม่ ซึ่งถูกเหยียบย่ำโดยนักคณิตศาสตร์รุ่นต่อรุ่น ท้ายที่สุด ชั้นเรียนคณิตศาสตร์ อย่างแรกเลย สร้างแบบแผนที่มั่นคงของการคิดในตัวเรา จากนั้นจึงเพิ่มความสามารถทางจิตให้กับเรา (หรือในทางกลับกัน พวกเขากีดกันการคิดอย่างอิสระ)

pozg.ru

วันอาทิตย์ที่ 4 สิงหาคม 2019

ฉันกำลังเขียนบทความเกี่ยวกับบทความเกี่ยวกับและเห็นข้อความที่ยอดเยี่ยมนี้ใน Wikipedia:

เราอ่านว่า: "... พื้นฐานทางทฤษฎีที่ร่ำรวยของคณิตศาสตร์แบบบาบิโลนไม่มีคุณลักษณะแบบองค์รวมและถูกลดทอนเป็นชุดของเทคนิคที่แตกต่างกัน ปราศจากระบบทั่วไปและฐานหลักฐาน"

ว้าว! เราฉลาดแค่ไหน และมองเห็นข้อบกพร่องของผู้อื่นได้ดีเพียงใด การที่เรามองคณิตศาสตร์สมัยใหม่ในบริบทเดียวกันนั้นยังอ่อนแออยู่หรือไม่? การถอดความข้อความข้างต้นเล็กน้อย โดยส่วนตัว ฉันได้รับสิ่งต่อไปนี้:

พื้นฐานทางทฤษฎีที่เข้มข้นของคณิตศาสตร์สมัยใหม่ไม่ได้มีลักษณะแบบองค์รวมและถูกลดขนาดให้เป็นชุดของส่วนต่างๆ ที่แตกต่างกัน ปราศจากระบบทั่วไปและฐานหลักฐาน

ฉันจะไม่ไปไกลเพื่อยืนยันคำพูดของฉัน - มีภาษาและอนุสัญญาที่แตกต่างจากภาษาและอนุสัญญาของสาขาคณิตศาสตร์อื่น ๆ อีกมากมาย ชื่อเดียวกันในสาขาคณิตศาสตร์ที่แตกต่างกันสามารถมีความหมายต่างกัน ฉันต้องการอุทิศวงจรการตีพิมพ์ทั้งหมดให้กับความผิดพลาดที่ชัดเจนที่สุดของคณิตศาสตร์สมัยใหม่ เจอกันเร็วๆนี้.

วันเสาร์ที่ 3 สิงหาคม 2019

จะแบ่งเซตออกเป็นเซตย่อยได้อย่างไร? ในการดำเนินการนี้ คุณต้องป้อนหน่วยวัดใหม่ ซึ่งมีอยู่ในองค์ประกอบบางอย่างของชุดที่เลือก ขอ​พิจารณา​ตัว​อย่าง.

ขอให้มีกันเยอะๆนะครับ แต่ประกอบด้วยสี่คน ชุดนี้สร้างขึ้นบนพื้นฐานของ "คน" มากำหนดองค์ประกอบของชุดนี้ผ่านตัวอักษร เอตัวห้อยที่มีตัวเลขจะแสดงเลขลำดับของแต่ละคนในชุดนี้ มาแนะนำหน่วยวัดใหม่ "ลักษณะทางเพศ" และแสดงด้วยตัวอักษร . เนื่องจากลักษณะทางเพศมีอยู่ในทุกคน เราจึงคูณแต่ละองค์ประกอบของชุด แต่เกี่ยวกับเพศ . สังเกตว่าชุด "คน" ของเราตอนนี้กลายเป็นชุด "คนที่มีเพศ" แล้ว หลังจากนั้นเราสามารถแบ่งลักษณะทางเพศเป็นเพศชายได้ bmและของผู้หญิง bwลักษณะทางเพศ ตอนนี้ เราสามารถใช้ตัวกรองทางคณิตศาสตร์ได้: เราเลือกลักษณะทางเพศอย่างใดอย่างหนึ่งเหล่านี้ ไม่สำคัญว่าตัวผู้หรือตัวเมียตัวใด หากมีอยู่ในบุคคล เราก็คูณมันด้วยหนึ่ง ถ้าไม่มีเครื่องหมายดังกล่าว เราจะคูณมันด้วยศูนย์ แล้วเราก็ใช้คณิตศาสตร์ของโรงเรียนตามปกติ ดูสิ่งที่เกิดขึ้น

หลังจากการคูณ การลดลง และการจัดเรียงใหม่ เราได้ชุดย่อยสองชุด: ชุดย่อยเพศผู้ bmและส่วนย่อยของผู้หญิง bw. ในทำนองเดียวกันนักคณิตศาสตร์ให้เหตุผลเมื่อพวกเขาใช้ทฤษฎีเซตในทางปฏิบัติ แต่พวกเขาไม่ให้เราลงรายละเอียด แต่ให้ผลลัพธ์ที่สมบูรณ์แก่เรา - "ผู้คนจำนวนมากประกอบด้วยกลุ่มย่อยของผู้ชายและกลุ่มย่อยของผู้หญิง" โดยปกติคุณอาจมีคำถามว่าคณิตศาสตร์ประยุกต์ในการแปลงข้างต้นได้ถูกต้องเพียงใด? ฉันกล้ารับรองกับคุณว่าอันที่จริงการแปลงนั้นทำถูกต้องแล้ว การรู้เหตุผลทางคณิตศาสตร์ของเลขคณิต พีชคณิตบูลีน และส่วนอื่นๆ ของคณิตศาสตร์ก็เพียงพอแล้ว มันคืออะไร? คราวหน้าจะเล่าให้ฟังค่ะ

สำหรับ supersets เป็นไปได้ที่จะรวมสองชุดเป็น superset เดียวโดยการเลือกหน่วยการวัดที่มีอยู่ในองค์ประกอบของสองชุดนี้

อย่างที่คุณเห็น หน่วยวัดและคณิตศาสตร์ทั่วไปทำให้ทฤษฎีเซตกลายเป็นอดีตไปแล้ว สัญญาณที่บ่งบอกว่าทฤษฎีเซตไม่ดีนักก็คือนักคณิตศาสตร์ได้ใช้ภาษาและสัญกรณ์สำหรับทฤษฎีเซตขึ้นมาเอง นักคณิตศาสตร์ทำในสิ่งที่หมอผีเคยทำ หมอผีเท่านั้นที่รู้วิธี "ใช้" อย่าง "ถูกต้อง" อย่าง "ความรู้" "ความรู้" นี้สอนเรา

สุดท้ายนี้ ฉันต้องการแสดงให้คุณเห็นว่านักคณิตศาสตร์จัดการอย่างไร

วันจันทร์ที่ 7 มกราคม 2019

ในศตวรรษที่ 5 ก่อนคริสต์ศักราช นักปรัชญาชาวกรีกชื่อ Zeno แห่ง Elea ได้คิดค้น aporias ที่มีชื่อเสียงของเขา ซึ่งมีชื่อเสียงมากที่สุดคือ aporia "Achilles and the Tortoise" นี่คือเสียง:

สมมติว่าอคิลลิสวิ่งเร็วกว่าเต่าสิบเท่าและอยู่ข้างหลังเต่าพันก้าว ในช่วงเวลาที่ Achilles วิ่งระยะทางนี้ เต่าคลานไปหนึ่งร้อยก้าวไปในทิศทางเดียวกัน เมื่ออคิลลิสวิ่งร้อยก้าว เต่าจะคลานไปอีกสิบก้าว เป็นต้น กระบวนการนี้จะดำเนินต่อไปอย่างไม่มีกำหนด Achilles จะไม่มีวันไล่ตามเต่า

เหตุผลนี้กลายเป็นเรื่องที่น่าตกใจสำหรับคนรุ่นหลังทั้งหมด อริสโตเติล, ไดโอจีเนส, คานท์, เฮเกล, กิลเบิร์ต... ทั้งหมดนี้ถือว่าไม่ทางใดก็ทางหนึ่ง ถือว่าอาพอเรียของซีโน ช็อกหนักมากจน" ... การอภิปรายยังคงดำเนินต่อไปในขณะนี้ ชุมชนวิทยาศาสตร์ยังไม่มีความคิดเห็นร่วมกันเกี่ยวกับสาระสำคัญของความขัดแย้ง ... การวิเคราะห์ทางคณิตศาสตร์ ทฤษฎีเซต วิธีการทางกายภาพและปรัชญาใหม่ ๆ มีส่วนร่วมในการศึกษาประเด็นนี้ ; ไม่มีใครกลายเป็นวิธีแก้ปัญหาที่เป็นที่ยอมรับในระดับสากล ..."[วิกิพีเดีย" Aporias ของ Zeno "] ทุกคนเข้าใจว่าพวกเขากำลังถูกหลอก แต่ไม่มีใครเข้าใจว่าการหลอกลวงคืออะไร

จากมุมมองของคณิตศาสตร์ Zeno ใน aporia ของเขาแสดงให้เห็นอย่างชัดเจนถึงการเปลี่ยนแปลงจากค่าเป็น การเปลี่ยนแปลงนี้หมายถึงการใช้แทนค่าคงที่ เท่าที่ฉันเข้าใจ เครื่องมือทางคณิตศาสตร์สำหรับการใช้หน่วยการวัดแบบแปรผันยังไม่ได้รับการพัฒนา หรือยังไม่ได้นำไปใช้กับ aporia ของ Zeno การใช้ตรรกะปกติของเรานำเราไปสู่กับดัก โดยความเฉื่อยของการคิด เราใช้หน่วยเวลาคงที่กับส่วนกลับกัน จากมุมมองทางกายภาพ ดูเหมือนว่าจะช้าลงจนกระทั่งหยุดโดยสมบูรณ์ในขณะที่ Achilles ไล่ตามเต่า หากเวลาหยุดลง Achilles จะไม่สามารถแซงเต่าได้อีกต่อไป

ถ้าเราเปลี่ยนตรรกะที่เราคุ้นเคย ทุกอย่างก็เข้าที่ Achilles วิ่งด้วยความเร็วคงที่ เส้นทางที่ตามมาแต่ละส่วนจะสั้นกว่าส่วนก่อนหน้าสิบเท่า ดังนั้นเวลาที่ใช้ในการเอาชนะมันจึงน้อยกว่าครั้งก่อนถึงสิบเท่า หากเราใช้แนวคิดเรื่อง "อินฟินิตี้" ในสถานการณ์นี้ ก็คงถูกต้องที่จะบอกว่า "อคิลลิสจะแซงเต่าอย่างรวดเร็วอย่างไม่สิ้นสุด"

จะหลีกเลี่ยงกับดักตรรกะนี้ได้อย่างไร? คงอยู่ในหน่วยของเวลาคงที่และอย่าเปลี่ยนเป็นค่าส่วนกลับ ในภาษาของ Zeno มีลักษณะดังนี้:

ในช่วงเวลาที่อคิลลิสวิ่งพันก้าว เต่าคลานไปหนึ่งร้อยก้าวไปในทิศทางเดียวกัน ในช่วงเวลาถัดไป เท่ากับครั้งแรก จุดอ่อนจะวิ่งต่อไปอีกพันก้าว และเต่าจะคลานหนึ่งร้อยก้าว ตอนนี้ Achilles เร็วกว่าเต่าแปดร้อยก้าว

วิธีการนี้อธิบายความเป็นจริงได้อย่างเพียงพอโดยไม่มีข้อขัดแย้งเชิงตรรกะใดๆ แต่นี่ไม่ใช่วิธีแก้ปัญหาที่สมบูรณ์ คำกล่าวของไอน์สไตน์เกี่ยวกับความเร็วแสงที่ไม่อาจเทียบได้นั้นคล้ายกับคำว่าอคิลลีสกับเต่าของซีโนมาก เรายังไม่ได้ศึกษา คิดใหม่ และแก้ปัญหานี้ และจะต้องไม่ค้นหาวิธีแก้ปัญหาในจำนวนมาก แต่ในหน่วยการวัด

aporia ที่น่าสนใจอีกอย่างของ Zeno เล่าถึงลูกศรที่บินได้:

ลูกศรที่บินได้นั้นไม่มีการเคลื่อนไหว เนื่องจากมันหยุดนิ่งทุกขณะ และเนื่องจากมันหยุดนิ่งอยู่ทุกขณะ มันจึงหยุดนิ่งเสมอ

ใน aporia นี้ ความขัดแย้งเชิงตรรกะถูกเอาชนะอย่างง่ายดาย - เพียงพอที่จะชี้แจงว่าในแต่ละช่วงเวลาลูกศรที่บินได้หยุดนิ่งอยู่ที่จุดต่าง ๆ ในอวกาศซึ่งอันที่จริงแล้วเป็นการเคลื่อนไหว มีจุดอื่นที่จะสังเกตที่นี่ จากภาพถ่ายรถหนึ่งภาพบนท้องถนน เป็นไปไม่ได้ที่จะระบุข้อเท็จจริงของการเคลื่อนที่หรือระยะห่างของรถคันดังกล่าว ในการพิจารณาข้อเท็จจริงของการเคลื่อนที่ของรถ จำเป็นต้องใช้ภาพถ่ายสองภาพที่ถ่ายจากจุดเดียวกัน ณ จุดต่างๆ ในเวลาที่ต่างกัน แต่ไม่สามารถใช้เพื่อกำหนดระยะทางได้ ในการกำหนดระยะห่างจากรถ คุณต้องมีรูปถ่ายสองภาพที่ถ่ายจากจุดต่างๆ ในอวกาศในเวลาเดียวกัน แต่คุณไม่สามารถระบุข้อเท็จจริงของการเคลื่อนที่จากจุดเหล่านั้นได้ (โดยปกติ คุณยังต้องการข้อมูลเพิ่มเติมสำหรับการคำนวณ ตรีโกณมิติจะช่วยคุณได้) สิ่งที่ฉันต้องการจะชี้ให้เห็นโดยเฉพาะคือจุดสองจุดในเวลาและจุดสองจุดในอวกาศเป็นสองสิ่งที่แตกต่างกันซึ่งไม่ควรสับสนเนื่องจากให้โอกาสในการสำรวจที่แตกต่างกัน
ฉันจะแสดงกระบวนการพร้อมตัวอย่าง เราเลือก "ของแข็งสีแดงในสิว" - นี่คือ "ทั้งหมด" ของเรา ในเวลาเดียวกันเราจะเห็นว่าสิ่งเหล่านี้มีคันธนูและไม่มีคันธนู หลังจากนั้นเราเลือกส่วนหนึ่งของ "ทั้งหมด" และสร้างชุด "ด้วยธนู" นี่คือวิธีที่หมอดูเลี้ยงตัวเองโดยเชื่อมโยงทฤษฎีเซตกับความเป็นจริง

ตอนนี้มาทำเคล็ดลับเล็กน้อย ลองใช้ "ก้อนสิวด้วยธนู" และรวม "ทั้งหมด" เหล่านี้ด้วยสีโดยเลือกองค์ประกอบสีแดง เรามี "สีแดง" มากมาย ตอนนี้เป็นคำถามที่ยาก: ชุดที่ได้รับ "พร้อมคันธนู" และ "สีแดง" เป็นชุดเดียวกันหรือสองชุดต่างกันหรือไม่ หมอผีเท่านั้นที่รู้คำตอบ แม่นยำยิ่งขึ้นพวกเขาเองไม่รู้อะไรเลย แต่อย่างที่พวกเขาพูดก็เป็นเช่นนั้น

ตัวอย่างง่ายๆ นี้แสดงให้เห็นว่าทฤษฎีเซตนั้นไร้ประโยชน์อย่างสิ้นเชิงเมื่อพูดถึงความเป็นจริง ความลับคืออะไร? เราสร้างชุด "สิวสีแดงที่มีธนู" การก่อตัวเกิดขึ้นตามหน่วยการวัดที่แตกต่างกันสี่หน่วย: สี (สีแดง), ความแข็งแรง (ของแข็ง), ความหยาบ (เป็นรอย), ของประดับตกแต่ง (ด้วยธนู) มีเพียงชุดของหน่วยวัดเท่านั้นที่ทำให้สามารถอธิบายวัตถุจริงในภาษาของคณิตศาสตร์ได้อย่างเพียงพอ. นี่คือสิ่งที่ดูเหมือน

ตัวอักษร "a" ที่มีดัชนีต่างกันหมายถึงหน่วยวัดที่ต่างกัน ในวงเล็บ จะเน้นหน่วยของการวัดตามที่มีการจัดสรร "ทั้งหมด" ในขั้นตอนเบื้องต้น หน่วยวัดตามที่ตั้งชุดนั้นถูกนำออกจากวงเล็บ บรรทัดสุดท้ายแสดงผลสุดท้าย - องค์ประกอบของชุด อย่างที่คุณเห็น หากเราใช้หน่วยเพื่อสร้างเซต ผลลัพธ์จะไม่ขึ้นอยู่กับลำดับการกระทำของเรา และนี่คือคณิตศาสตร์ ไม่ใช่การเต้นรำของหมอผีกับรำมะนา หมอผีสามารถ "ใช้สัญชาตญาณ" เพื่อให้ได้ผลลัพธ์แบบเดียวกัน โดยโต้แย้งด้วย "ความชัดเจน" เนื่องจากหน่วยการวัดไม่รวมอยู่ในคลังแสง "ทางวิทยาศาสตร์" ของพวกเขา

ด้วยความช่วยเหลือของหน่วยการวัด มันง่ายมากที่จะแยกหนึ่งชุดหรือรวมหลายชุดเป็นซุปเปอร์เซ็ตเดียว มาดูพีชคณิตของกระบวนการนี้กันดีกว่า



หากคุณสังเกตเห็นข้อผิดพลาด ให้เลือกข้อความแล้วกด Ctrl + Enter
แบ่งปัน:
เคล็ดลับการสร้างและปรับปรุง