Советы по строительству и ремонту

Направленное движение заряженных частиц в электрическом поле.

Заряженными частицами могут являться электроны или ионы (заряженные атомы).

Атом, потерявший один или несколько электронов, приобретает положительный заряд. - Анион (положительный ион).
Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. - Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.

В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест - дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE , которая перемещает заряд в направлении вектора этой силы.

На рисунке показано, что вектор силы F - = -qE , действующей на отрицательный заряд -q , направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину. Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:

I = Q/t .

Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m 2:

Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ 1 и φ 2 между этими точками из расчёта:

U = A/Q = φ 1 - φ 2

Электрический ток может быть постоянным или переменным.

Постоянный ток - электрический ток, направление и величина которого не меняются во времени.

Переменный ток - электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.
Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.
Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R :

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток.

В металлических проводниках носителями зарядов являются свободные электроны.
С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.
При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.
Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. - Электролиз.
Анионы - положительные ионы. Перемещаются к отрицательному электроду - катоду.
Катионы - отрицательные ионы. Перемещаются к положительному электроду - аноду.
Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах - плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах - лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению.
Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры.
С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.
При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники - изоляторами.
Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.
При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.
Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.
При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.
Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.
В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного I n и дырочного I p токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др. Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

– В Европе теперь никто на пианино не играет,
играют на электричестве.
–На электричестве играть нельзя – током убьет.
–А они в резиновых перчатках играют…
–Э! В резиновых перчатках можно!
«Мимино»

Странно… Играют на электричестве, а убивает почему-то каким-то там током… Откуда в электричестве ток? И что это за ток? Здравствуйте, уважаемые! Давайте разбираться.

Ну, во-первых, начнём с того, почему это играть на электричестве в резиновых перчатках всё-таки можно, а, например, в железных или свинцовых – нельзя, хотя металлические прочнее? Дело все в том, что резина не проводит электричество, а железо и свинец – проводят, поэтому и током ударит. Стоп-стоп… Мы идем не в ту сторону, давайте, разворачиваемся… Ага… Начинать нужно с того, что все в нашей Вселенной состоит из мельчайших частичек – атомов. Эти частички настолько малы, что, например, человеческий волос по толщине в несколько миллионов раз превосходит размер самого маленького атома водорода. Атом состоит (см. рисунок 1.1) из двух основных частей – положительно заряженного ядра, состоящего в свою очередь из нейтронов и протонов и вращающихся по определенным орбитам вокруг ядра электронов.

Рисунок 1.1 – Строение электрона

Суммарный электрический заряд атома всегда (!) равен нулю, то есть атом электрически нейтрален. Электроны имеют довольно сильную связь с атомным ядром, однако, если приложить некоторую силу и «вырвать» один или несколько электронов из атома (посредством нагревания или трения, например), то атом превратиться в положительно заряженный ион, поскольку величина положительного заряда его ядра будет больше величины отрицательного суммарного заряда оставшихся электронов. И наоборот, – если каким-либо образом добавить к атому один или несколько электронов (но не посредством охлаждения…), то атом превратится в отрицательно заряженный ион.

Электроны, входящие в состав атомов любого элемента,абсолютно идентичны по своим характеристикам: заряду, размеру, массе.

Теперь, если посмотреть на внутренний состав любого элемента можно увидеть, что не весь объем элемента занимают атомы. Всегда, в любом материале так же присутствуют как отрицательно заряженные, так и положительно заряженные ионы, причем процесс преобразования «отрицательно заряженный ион–атом–положительно заряженный ион» происходит постоянно. В процессе этого преобразования образуются так называемые свободные электроны – электроны, не связанные ни с одним из атомов или ионом. Оказывается, что различных веществ количество этих свободных электронов разное.

Так же из курса физики известно, что вокруг любого заряженного тела (даже такого ничтожно малого, как электрон) существует так называемое невидимое электрическое поле, основными характеристиками которого являются напряженность и направление. Условно принято, что поле всегда направлено из точки положительного заряда к точке отрицательного заряда. Такое поле возникает, например, при натирании эбонитовой или стеклянной палочки о шерсть, при этом в процессе можно услышать характерный треск, явление которого мы рассмотрим позже. Причем, на стеклянной палочке будет образовываться положительный заряд, а на эбонитовой – отрицательный. Это как раз и будет означать переход свободных электронов одного вещества в другое (со стеклянной палочки в шерсть и из шерсти в эбонитовую палочку). Переход электронов означает изменение заряда. Для оценки этого явления существует специальная физическая величина – количество электричества, названная кулон, причем 1Кл= 6.24 10 18 электронов. Исходя из этого соотношения заряд одного электрона (или его по-другому называют элементарным электрическим зарядом) равен:

Так при чем же здесь все эти электроны и атомы… А вот при чём. Если взять материал с большим содержанием свободных электронов и поместить его в электрическое поле, то все свободные электроны будут двигаться в направлении положительной точки поля, а ионы – поскольку они имеют сильные межатомные (межионные) связи –оставаться внутри материала, хотя по идее они должны двигаться к той точке поля, заряд которой противоположен заряду иона. Это было доказано с помощью простого эксперимента.

Два различных материала (серебро и золото) соединили друг с другом и поместили в электрическое поле на несколько месяцев. Если бы наблюдалось движение ионов между материалами, то в месте контакта должен был бы произойти процесс диффузии и в узкой зоне серебра образоваться золото, а в узкой зоне золота – серебро, но такого не произошло, что и доказало неподвижность «тяжелых» ионов. На рисунке 2.1 показано движение положительной и отрицательной частиц в электрическом поле: отрицательно заряженные электроны движутся против направления поля, а положительно заряженные частицы – по направлению поля. Однако это справедливо только для частиц, не входящих в кристаллическую решетку какого-либо материала и не связанных между собой межатомными связями.

Рисунок 1.2 – Движение точечного заряда в электрическом поле

Движение происходит именно таким образом, потому как одноимённые заряды отталкиваются, а разноимённые – притягиваются: на частицу всегда действуют две силы: сила притяжения и сила отталкивания.

Так вот, именно упорядоченное движение заряженных частиц и называют электрическим током. Существует забавный факт: изначально считалось (до открытия электрона), что электрический ток порождён именно положительными частицами, поэтому направление тока соответствовало движению положительных частиц от «плюса» к «минусу», однако впоследствии обнаружилось обратное, но направление тока решено было оставить прежним, и в современной электротехнике осталась эта традиция. Так что всё на самом деле наоборот!

Рисунок 1.3 – Строение атома

Электрическое поле можно, хоть и характеризуется величиной напряженности, но создается вокруг любого заряженного тела. Например, если всё ту же стеклянную и эбонитовую палочки натереть о шерсть, то вокруг них возникнет электрическое поле. Электрическое поле существует около любого объекта и воздействует на другие объекты, сколь угодно далеко они бы ни располагались.Однако с ростом расстояния между ними напряженность поля уменьшается и её величиной можно пренебречь, так что два человека, стоящие рядом и имеющие некоторый заряд, хоть и создают электрическое поле, и между ними протекает электрический ток, но он настолько мал, что его величину трудно зафиксировать даже специальными приборами.

Так вот, пора бы уже побольше рассказать о том, что это за характеристика – напряженность электрического поля. Начинается всё с того, что в 1785 году французский военный инженер Шарль Огюстен де Кулон, отвлекшись от рисования военных карт, вывел закон, описывающий взаимодействие двух точечных зарядов:


Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Мы не будем углубляться в то, почему это именно так, просто поверим на слово господину Кулону и введём некоторые условия для соблюдения этого закона:

  • точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными не пересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  • их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  • взаимодействие в вакууме.

Математически закон записывается следующим образом:

где q 1 ,q 2 – величины взаимодействующих точечных зарядов,
r – расстояние между этими зарядами,
k – некоторый коэффициент, описывающий влияние среды.
На рисунке ниже приведено графическое пояснение закона Кулона.

Рисунок 1.4 – Взаимодействие точечных зарядов. Закон Кулона

Таким образом, сила взаимодействия между двумя точечными зарядами возрастает при увеличении этих зарядов и уменьшается при увеличении расстояния между зарядами, причём увеличение расстояния в два раза приводит к уменьшению силы в четыре раза. Однако подобная сила возникает не только между двумя зарядами, но и между зарядом и полем (и опять электрический ток!). Логично было бы предположить, что на различные заряды одно и то же поле оказывает различное влияние. Так вот отношение силы взаимодействия поля и заряда к величине этого заряда и называется напряжённостью электрического поля. При условии, что заряд и поле неподвижны и не изменяют своих характеристик с течением времени.

где F – сила взаимодействия,
q – заряд.
Причём, как говорилось ранее, поле имеет направление, и это возникает именно исходя из того, что сила взаимодействия имеет направление (является векторной величиной: одноимённые заряды притягиваются, разноимённые – отталкиваются).
После того, как я написал этот урок, я попросил моего друга прочитать его, оценить, так скажем. Кроме того, я задал ему один интересный на мой взгляд вопрос как раз по теме этого материала. Каково же было моё удивление, когда он ответил неверно. Попробуйте и Вы ответить на этот вопрос (он помещен в раздел задач в конце урока) и аргументировать свою точку зрения в комментариях.
И последнее: поскольку поле может переместить заряд из одной точки пространства в другую, оно обладает энергией, а, следовательно, может совершать работу. Этот факт пригодится нам в дальнейшем при рассмотрении вопросов работы электрического тока.
На этом первый урок окончен, но у нас так и остался без ответа вопрос, почему же, в резиновых перчатках током не убьет. Оставим его как интригу на следующий урок. Спасибо за внимание, до новых встреч!

  • Наличие свободных электронов в веществе является условием для возникновения электрического тока.
  • Для возникновения электрического тока необходимо электрическое поле, которое существует только вокруг тел, обладающих зарядом.
  • Направление протекания электрического тока обратно направлению движения свободных электронов – ток течёт от «плюса» к «минусу», а электроны наоборот – от «минуса» к «плюсу».
  • Заряд электрона равен 1.602 10 -19 Кл
  • Закон Кулона: модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

  • Предположим, что в городе-герое Москве имеется некая розетка, самая такая обычная розетка, которые есть и у Вас дома. Так же предположим, что мы протянули провода из Москвы во Владивосток и подключили во Владивостоке лампочку (опять же, лампа совершенно обычная, такая же освещает сейчас комнату и мне, и Вам). Итого, что мы имеем: лампочка, присоединенная к концам двух проводов во Владивостоке и розетку в Москве. Теперь вставим «московские» провода в розетку. Если мы не будем учитывать массу всяких условий и просто предположим, что лампочка во Владивостоке загорелась, то попробуйте предположить, доберутся ли электроны, которые в данный момент находятся в розетке в Москве в нить накала лампочки во Владивостоке? Что случится, если мы подключим лампочку не к розетке, а к аккумулятору?

Направленное (упорядоченное) движение частиц, носителей электрического заряда, в электромагнитном поле.

Что такое электрический ток в разных веществах? Примем, соответственно, движущиеся частицы:

  • в металлах - электроны,
  • в электролитах - ионы (катионы и анионы),
  • в газах - ионы и электроны,
  • в вакууме при определённых условиях - электроны,
  • в полупроводниках - дырки (электронно-дырочная проводимость).

Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток проявляется следующим образом:

  • нагревает проводники (явление не наблюдается в сверхпроводниках);
  • изменяет химический состав проводника (данное явление в первую очередь характерно для электролитов);
  • создает магнитное поле (проявляется у всех без исключения проводников).

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ""ток проводимости"". Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют ""конвекционным"".

Токи различают на постоянный и переменный. Также существуют всевозможные разновидности переменного тока. При определении видов тока слово «электрический» опускают.

  • Постоянный ток - ток, направление и величина которого не меняются во времени. Может быть пульсирующий, например выпрямленный переменный, который является однонаправленным.
  • Переменный ток - электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток - электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
  • Синусоидальный ток - периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. Любой периодический несинусоидальный ток может быть представлен в виде комбинации синусоидальных гармонических составляющих (гармоник), имеющих соответствующие амплитуды, часто́ты и начальные фазы. В этом случае Электростатический потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток - относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
  • Ток высокой частоты - переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, которые являются либо полезными, определяющими его применение, либо вредными, против которых принимаются необходимые меры, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей.
  • Пульсирующий ток - это периодический электрический ток, среднее значение которого за период отлично от нуля.
  • Однонаправленный ток - это электрический ток, не изменяющий своего направления.

Вихревые токи

Вихревые токи (или токи Фуко) - замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитный поток, поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики

Исторически принято, что """направление тока""" совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Дрейфовая скорость электронов

Дрейфовая скорость направленного движения частиц в проводниках, вызванного внешним полем, зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счёт упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Сила и плотность тока

Электрический ток имеет количественные характеристики: скалярную - силу тока, и векторную - плотность тока.

Сила ток а - физическая величина, равная отношению количества заряда

Прошедшего за некоторое время

через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в СИ измеряется в амперах (международное и русское обозначение: A).

По закону Ома сила тока

на участке цепи прямо пропорциональна электрическому напряжению

Приложенному к этому участку цепи, и обратно пропорциональна его сопротивлению

Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока средние значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна.

Поэтому применяют следующие понятия:

  • мгновенные напряжение и сила тока, то есть действующие в данный момент времени.
  • амплитудные напряжение и сила тока, то есть максимальные абсолютные значения
  • эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.

Плотность тока - вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Согласно закону Ома в дифференциальной форме плотность тока в среде

пропорциональна напряжённости электрического поля

и проводимости среды

Мощность

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

  • активное сопротивление - сопротивление теплообразованию;
  • реактивное сопротивление - сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно).

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля - Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь

определяется скалярным произведением вектора плотности тока

и вектора напряжённости электрического поля

в данной точке:

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны

Зависимость сопротивления от длины волны и проводника относительно проста:

Наиболее применяемому электрическому току со стандартной частотой 50 ""Гц"" соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Частота

Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.

Период переменного тока - наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Ток смещения

Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения

Векторная величина, пропорциональная скорости изменения электрического поля

во времени:

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения

в конденсаторе определяется по формуле:

Заряд на обкладках конденсатора,

Электрическое напряжение в между обкладками,

Электрическая ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы - здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма - ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты - жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Электрические токи в природе


Атмосферное электричество - электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин.

В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю.

Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10 −12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма - естественный коронный электрический разряд.

Биотоки - движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Применение

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие - электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине


  • диагностика - биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Раздел физиологии, изучающий электрические явления в организме называется электрофизиология.
    • Электроэнцефалография - метод исследования функционального состояния головного мозга.
    • Электрокардиография - методика регистрации и исследования электрических полей при работе сердца.
    • Электрогастрография - метод исследования моторной деятельности желудка.
    • Электромиография - метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.
  • Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезнь болезни Паркинсона и эпилепсии, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Электробезопасность


Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • ""безопасным"" считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • ""минимально ощутимый"" человеком переменный ток составляет около 0,6-1,5 мА (переменный ток 50 Гц) и 5-7 мА постоянного тока;
  • пороговым ""неотпускающим"" называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10-15 мА, для постоянного - 50-80 мА;
  • ""фибрилляционным порогом"" называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России в соответствии c Правилами технической эксплуатации электроустановок потребителей (Приказ Минэнерго РФ от 13.01.2003 № 6 «Об утверждении Правил технической эксплуатации электроустановок потребителей») и Правилами по охране труда при эксплуатации электроустановок (Приказ Минэнерго РФ от 27.12.2000 N 163 «Об утверждении Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок»), установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Примечания

  • Баумгарт К. К., Электрический ток.
  • А.С. Касаткин. Электротехника.
  • Ю.Г. Синдеев. Электротехника с элементами электроники.

На вопрос что значит "ток течет по проводам"? он что, жидкий??? (звучит совсем по-детски, но по-другому не могу спросить!!!) заданный автором Lady лучший ответ это Ну, это же метафора.. . На самом деле - электроны колеблются взад-вперед и по орбите вокруг атома и передают это колебание другим электронам возле другого атома. При этом сами с места не двигаются. Когда они колеблются - они передают друг другу заряд. Само собой - это происходит очень быстро. Со скоростью света (она же скорость распространения электромагнитного излучения, одной из форм которого является электрический ток) . Вот так.

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: что значит "ток течет по проводам"? он что, жидкий??? (звучит совсем по-детски, но по-другому не могу спросить!!!)

Ответ от Заочник [гуру]
движение положительно заряженных частиц


Ответ от Инка =) какаяразница [гуру]
он не течет-он бежит))


Ответ от Firafine [гуру]
ti molniyu kogda nibud videla?
nu vot, tok ne jidkii, eto volna, ti je radio slushaesh nu predstav


Ответ от Oлег Сальников [гуру]
Электрический ток, - это упорядоченное движение электронов в проводнике. От отрицательного полюса к положительному.


Ответ от Ётратий Аркадий [новичек]
главное - не вздумай его потрогать


Ответ от NoName NoSurname [эксперт]
Мдааа... а время по-твоему тоже жидкое раз с ним употребляется глагол течет? Так сложилось уж в русском языке (за другие сходу не скажу) ! А насчет остальных вопросов - постеснялась бы такое спрашивать, они показывают, что недалеко ушла ты в плане интеллекта))


Ответ от Makato [эксперт]
Ток - непрерывное движение заряженных частиц, умные люди не говорят, что ток течет, ток - идет (непрерывное движение заряженных частиц идет) , цвета нету, невидимый, в розетке не сидит.
С уважением. Гигант мысли 🙂


Ответ от Владимир Петров [гуру]
он не сидит в розетке.. уж если сравнивать с водой, то в розетке в одной дырочке горное озеро там куча электронов, а в другой низина и когда ты втыкаешь в её вилку электроны из озера устремляються в равнину и совершают на своем пути работу.. например кипятят тебе чайник..


Ответ от Arximed60 [гуру]
Обычно так принято в просторечии. На самом деле по определению - электрический ток это направленное движение заряженных частиц. К жидкости не имеет никакого отношения.


Ответ от Mania Mania [мастер]
Не заморачивайся ты не должна этого знать ведь ты не электрик.


Ответ от // I/I X A I/I /\ [гуру]
Потому что движение электронов в проводнике похоже на движение воды в трубе.
Вот фаза - это труба под давлением. Вот ноль - это канализация. Напряжение - это давление воды. Сила тока - это количество воды, протекаемое за единицу времени. Сопротивление - это узкая труба. Земля - это когда вода из трубы на землю выливается. Ну и так далее...


Ответ от Andy [новичек]
На самом деле, ток не может идти или течь. Ток либо имеет место быть, либо нет. Ток-это, в первую очередь, поток. Неужели кто-нибудь говорит, что течение реки течет??? Течение реки или есть или нет. Ведь так? Так. Тогда почему преобладающее большинство говорит "ток течет" или "ток идет"? Задумайтесь, господа!



Ответ от Equilibrium [активный]
Классическая электронная теория:
Ток - упорядоченное движение электронов (в металлах). Условно от плюса к минусу. Ток создаётся разностью потенциалов на двух концах проводника (напряжение).
Необъяснимо, но факт:
С точки зрения классической теории невозможно объяснить следующее. Почему при натирании янтаря или эбонита, они заряжаются, ведь это диэлектрики. При подачи напряжения на сварочные аппараты, провода подходящие к электродам начинают дёргаться.

В школе, не помню уже в котором классе мне объяснили, что ток течёт от + к - . Т.е. если между выводами батарейки (были такие – КБС) вставить лампочку, то ток пройдёт по плюсовой клемме батарейки, затем через лампочку, она загорится и по минусовой клемме уйдёт в батарейку. Через пару лет учитель физики объяснил, что направление тока от + к - условно. Фактически ток – это движение электрических зарядов, из коих двигаться по проводу могут только свободные электроны. Т.е. ток течёт от – к + .

Необходимым условием появления тока является замкнутость цепи. В то время я уже осваивал 6П3С, подключённую к аноду выходной лампы вещательного приёмника, и в этом постулате нисколько не сомневался. Особенно после пары ударов этим током.

Дни бегут, складываются в года. Пошли первые проявления старческого маразма и видимо от этого что-то засомневался я в приобретённых школьных знаниях.

Вот имеем источник тока и замкнутую цепь с нагрузкой. Выбежал, неважно с какой клеммы, розовощёкий, уверенный в своих силах ток и помчался к нагрузке. Поборолся с ней, так как просто так отдаваться она не хотела и сопротивлялась, но ток сделал своё дело, правда отдал нагрузке часть своей энергии и потный и слегка бледный прибежал на вторую клемму источника.

Вроде бы реальная картина, закон сохранения энергии выполняется, только на проверку – фантастика! Проверка очень простая: вставим в цепь до нагрузки и после оной по амперметру. И что они показывают? А то, что величина тока до и после соития с нагрузкой ОДИНАКОВА!

Может ток наш врун и дела с нагрузкой не имел, поэтому амперметры и показывают одинаковый ток? Так нет же, если в качестве нагрузки была электролампочка, то мы видели свет. Трата энергии несомненно была! Но как же быть с тем, что вытекающий ток равен втекающему?

Чудны дела твои, господи!

Опыт N 2.

К каждой клемме источника присоединяем по проводку и попробуем определить знак потенциала на их концах. Поскольку ток это движение электронов, то вследствие емкости проводка и разности потенциалов между клеммой и проводом электроны побегут в провод и на его конце, подключенного к отрицательной клемме, мы обнаружим отрицательные заряды.

Из этого же определения тока следует, что на конце проводника, подключённого к положительной клемме, никаких зарядов не будет. Однако они там обнаруживаются. Причём положительные.

Стоп! Положительные по проводу не бегают! Откуда же они там взялись?

«А просто - говорят знающие люди - Источник отдал в провод часть электронов и недостачу восполнил, забрав такое же количество из другого провода. Поскольку в этом проводе образовалась нехватка электронов, то он «зарядился» положительно. Источник тока – это насос, перекачивающий электроны».

Вроде нормальное объяснение.

Стоп. Во-первых, количество свободных электронов не бесконечно, например, для медного проводника один свободный электрон приходится примерно на полтора-два миллиона атомов (1), а величина тока при КЗ о-го-го! Во-вторых, если к проводкам подключена нагрузка, а источник тока, по сути, является насосом (почему его тогда называют источником?), то энергия вытекающего тока должна быть больше энергии втекающего, так как что-то должно же рассеяться на нагрузке. А токи в проводниках равны по величине. (Второй раз о Создателе всуе не упоминаем).

Так как же течёт ток???

Что от плюса к минусу, что от минуса к плюсу – одна и та же проблема…

Чтобы как-то разобраться в ней логично начать с определений. В общепринятом понимании ток рассматривается как движение электрических зарядов. Это движение вызывается электродвижущей силой источника тока или разностью потенциалов при движении электрических зарядов по проводнику с заряженного объекта на незаряженный. Но нас интересует не движение зарядов, а то, как они переносят энергию.

Здесь общеприняты две модели. В первой электроны (носители зарядов) рассматриваются как «шарики», разгоняемые эдс или разностью потенциалов. Т.е., чем сильнее мы их разгоняем, тем больше энергии они приобретают. При встрече с нагрузкой «шарики» тормозятся, отдают ей часть энергии и естественно количество «шариков», проходящих в единицу времени через сечение проводника уменьшается. Во второй модели заряд является энергетическим образованием. Проходя через нагрузку, часть зарядов передаёт ей энергию и исчезает. В результате, величина токов в ветвях цепи неодинакова.

Противоречие между опытом и законом сохранения энергии остаётся. Либо в «консерватории» что-то надо подправить, либо мы чего-то недопонимаем.

Тем радиолюбителям, у которых эти логичные рассуждения вызывают протест, напомню, по крайней мере, два известных им факта.

1. Величина КСВ в начале фидера меньше, чем на входе нагрузки, им питаемой.

2. Амплитуда стоячих волн тока в LW или в вибраторе, запитанном посредине, длинной несколько λ, уменьшается от точки запитки к концу провода.

Известно объяснение этих фактов: потери током своей энергии при движении зарядов по проводнику.

Обратим внимание на нестыковки некоторых известных положений.

1. Скорость свободных электронов по проводнику не совпадает со скоростью распространения в нём тока.

2. Школьный электроскоп можно зарядить положительными зарядами. Если рядом с ним поставить незаряженный электроскоп и соединить их проводником, то в нём возникает кратковременный зарядный ток второго электроскопа. Т.е. по проводнику перетекли ПОЛОЖИТЕЛЬНЫЕ заряды. Что является их носителем?

3. Если в цепи постоянного тока включить два источника встречно, то каждый из них будет нагрузкой для другого, а ток в цепи будет иметь разностную величину. При переменном токе в случае его встречи с волновой неоднородностью цепи возникает отраженная токовая волна. Эта волна тока двигается навстречу основной и токи не противодействуют друг другу . Словно не замечают друг друга.

Следует честно признать, что мы не знаем, что такое электрический ток!

В общепринятой теории электрического тока указывается, что прежде тока в проводе распространяется электрическое поле, без которого движение зарядов немыслимо. Т.е. в приведенном Опыте N 2 по одному из проводников распространяется поле положительного потенциала, а по другому – отрицательного.

Есть предположение, что сами заряды являются безинерциальными (2). Можно предположить, что они являются энергетическими «сгустками» продольного электрического поля и поэтому в виде токовых волн могут распространяться от клеммы источника тока со скоростью поля в данной среде. Если проводники замкнуть на нагрузку, то каждая токовая волна отдаст ей часть своей энергии, а величина тока во «входящей» и «исходящей» ветвях цепи будет равна сумме величин токов истекающего из данной клеммы и истекшего с другой клеммы и прошедшего через нагрузку. Амперметры покажут одинаковый ток! Таким образом, закон сохранения энергии при равенстве токов во входящей и исходящей ветвях нагрузки СОХРАНЯЕТСЯ! А источник тока соответствует своему названию: ТОК ИСТЕКАЕТ ИЗ ОБЕИХ КЛЕММ!

Фантастика? Ничуть. Есть практические подтверждения этого предположения, хотя сами заряды гипотетичны.

Рассмотрим некоторые процессы в длинных фидерных линиях. Чтобы «примирить» скорость свободных электронов с фактической скоростью распространения энергии в линии, предположили, что энергия переносится ТЕМ-волной. Чтобы такая волна образовалась, в начале линии необходимо согласно Пойтингу, чтобы вектор магнитного поля был перпендикулярен плоскости, проходящей через два провода линии, а вектор электрического поля лежал в этой плоскости и был направлен от одного провода к другому. Первое условие выполняется при разном направлении токов в соседних проводах. Вариант «электронного насоса» успешно с этим справляется. А вот второе условие требует наличие в соседних проводах РАЗНОПОЛЯРНЫХ ЗАРЯДОВ!

Выполнить это условие «насос» не в состоянии. А вот безинерциальные заряды – вполне. Достаточно вспомнить, что направление движение тока принято условно. Если движение положительных зарядов от клеммы источника к нагрузке принимается за направление тока от клеммы, то движение отрицательных зарядов от клеммы к нагрузке принимается за направление тока к клемме. Т.е. при истечении тока с обеих клемм выполняются оба условия образования ТЕМ-волны. УСЛОВНОСТЬ НАПРАВЛЕНИЯ ТОКА СОЗДАЁТ ИЛЛЮЗИЮ ВЫТЕКАНИЯ ТОКА ИЗ ОДНОЙ КЛЕММЫ И ВТЕКАНИЯ ЕГО В ДРУГУЮ!

Не счесть, сколько заблуждений породила эта иллюзия. Но об этом позже.

Ещё один пример, подтверждающий предположение об истечении тока с обеих клемм – линия, замкнутая на конце, или более реальный пример – петлевая, рамочная антенна. Как известно из практики на конце линии или ровно посредине периметра рамки образуется пучность тока, величина которой без учёта потерь в линии или антенне равна удвоенной величине падающей волны тока. Попробуйте объяснить происхождение этой пучности тока без его истечения с обеих клемм? Не получится!

Всё изложенное не является моей выдумкой. Всё это в виде отдельных фрагментов приводится в учебниках. Например, понятие токовых волн встречается у Белоцерковского Б.Г. (3) в XI разделе. А Д.П.Линде (4) на стр. 17 приводит рисунок, иллюстрирующий эти самые токовые волны с движением в них положительных и отрицательных зарядов. Только авторы учебников не любят акцентировать внимание на нестыковках отдельных положений теории электрического тока и, рисуя радужную картину общего познания мироздания, скрывают от неокрепшего ума мысль, что Наука знает, что она ещё больше не знает!

Подведём итог. Скорее всего, носителями энергии кроме электронов и ионов являются энергетические образования, родственные электрическому полю. Переменный ток в виде токовых волн вытекает из обеих клемм источника и не нуждается в отличие от постоянного в гальванической замкнутости цепи. Постоянный ток можно представить как переменный с очень большим периодом колебания. Особенности тока, малозаметные при постоянном токе, весьма рельефны при переменном. Особенно с ростом его частоты.

Как только в руках радиолюбителей оказались моделировщики, они сразу бросились проверять с их помощью известные классические антенны и их системы. И некоторые результаты вызвали шок!

Например, оказалось, что во входном сопротивлении полуволнового вибратора, питаемого в разрыв полотна, при сдвиге точки питания из центра появляется реактивность. Откуда? Ведь вибратор имеет резонансную длину! А резонанс – он и в Африке резонанс! Именно он, как уверены многие, обеспечивает эффективную работу антенны!

Это заблуждение проистекает из модели тока, вытекающего с одной клеммы источника и втекающего в другую, что предполагает замкнутость цепи. Если же цепь гальванически не замкнута, то роль «замыкателя» отводится конденсатору, точнее – токам смещения «протекающим» в нём. На этой основе родилось убеждение, что антенн без противовеса не бывает. Ищите и обрящете! И если вы не видите «суслика», то он всё равно обязательно существует!

Например, И.В.Гончаренко (5) утверждает, что полуволновой вибратор, запитанный с конца, не работает без хотя бы маленького противовеса. В крайнем случае, противовесом выступает один из проводов линии питания. А если фидера нет и антенна питается напрямую? Всё равно «суслик» обязан быть!

У J-антенны противовесом считается четвертьволновой шлейф. У антенны RX3AKT – внешняя поверхность кабеля, из которого выполнен шлейф. Ну, а больше всего в ступор вводит Антенна Фукса, в которой автор всеми известными способами «отвязал» вибратор от источника питания.

Ещё более парадоксальная ситуация сложилась с GP. Казалось бы, всё понятно, вот вертикальный излучатель, а вот противовесы, собирающие токи смещения. Но любопытные радиолюбители, играя с моделировщиком, обнаружили (хотя это было известно и ранее, например, при описании работы квадрата в источниках доммановской эры), что соосно расположенные противовесы практически не излучают, следовательно, и не принимают!

Ну, лень нам изучать основы электротехники! Конденсатор – это устройство для накопления энергии! Не будем заморачиваться с тем, существует или нет ток смещения, отметим, что в этом устройстве по идее ни грамма энергии с одной обкладки через диэлектрик не переносится на другую обкладку. Не существует тока через конденсатор, существуют токи его заряда и разряда, которые текут на обкладку и с неё ПО ОДНОМУ и тому же проводу. И только для упрощения расчётов электрических цепей ток проводимости принимается равным по величине току смещения, «текущему» через конденсатор.

В предлагаемой модели тока эти нестыковки не возникают. Например:

Диполь со смещением точки запитки из центра

В короткую и длинную части вибратора из источника или из фидера втекают прямые (падающие) токовые волны. Достигнув концов, они отражаются и текут к точке питания, образуя в суперпозиции стоячие волны тока. Но в точку питания обратные (отраженные) волны приходят не одновременно. Поэтому величины стоячих волн тока на клеммах источника (фидера) в общем случае не равны и не совпадают по фазе. Следовательно, напряжение и ток на клеммах источника не синфазны, что является свойством реактивной нагрузки. Мера противодействия – гальваническая развязка вибратора от источника, линии питания.

GP

Та же картина, что и в диполе. Токи втекают в вибратор и противовесы. Стоячие волны тока образуют переменное электрическое поле между вибратором и противовесами. В случае неравенства их длин во входном сопротивлении появляется реактивность.

Полуволновой вибратор, питаемый с конца

Предположим, что питание вибратора осуществляется с помощью линии питания. Втекающий ток и отраженный от неподключённого конца вибратора образуют стоячую полуволну тока. Поскольку токи теряют часть энергии на излучение и преодоление активного сопротивления провода, ток в точке питания не равен нулю. В проводах фидера также образуются стоячие волны тока и напряжения. Поскольку вибратор излучает часть подведенной энергии, то энергия стоячих волн в проводах линии будет разной. В проводе линии, подключённом к вибратору, амплитуда тока стоячей волны будет меньше, а в неподключённом проводе линии будет больше. Для выравнивания токов в линии применяется два способа. Между антенной и линией ставится буферный накопитель энергии – резонатор в виде параллельного контура или четвертьволнового шлейфа. Второй способ – гальваническая развязка с помощью трансформатора. У Антенны Фукса применены оба способа.

Истекание тока с обеих клемм источника позволяет по-новому взглянуть на работу и самого источника. В любом проводе, подключённом к клемме, течёт ток. Если к «положительной» клемме, как правило, подключается один провод: антенна или центральная жила кабеля, то к другой подключён корпус радиостанции и провод заземления. Т.е. величины падающих волн токов в центральной жиле и оплётке кабеля в принципе не равны и следует принять меры по их выравниванию.

Как правило, колебательная система (КС) усилителя мощности радиостанции представляет собой параллельное включение индуктивности и емкости, концы которых подсоединены к соответствующим выходным клеммам. На каждом из них происходит сложение двух сил: электродвижущей силы, посылающего заряды в нагрузку, и силы притяжения зарядов на обкладках конденсатора. Эдс, конечно, сильнее. Но если не обеспечить приблизительное равенство величин исходящих токов с обоих концов контура, то количество зарядов на одной из обкладок вырастет, и сила их притяжения не позволит зарядам другой обкладки покинуть её. В этом случае КС выйдет из резонанса, а, в крайнем случае, откажется питать нагрузку. Интересный опыт описал Е.Кузнецов (RA 1AIT ) (6). Работая с Антенной Фукса мощностью до 5 Вт, он обнаружил, что при подключении антенны к роторным пластинам переменного конденсатора она переставала работать. При подключении же к статорным пластинам неоновая лампочка, поднесённая к корпусу конденсатора, ярко сияла. Т.е. емкости корпуса конденсатора было достаточно для размещения в ней количества зарядов равного количеству зарядов, ушедших в вибратор.

Понимая, что данная статья вызовет неоднозначную реакцию, закончу словами великого поэта: «О, сколько нам открытий чудных готовит просвещенья Дух. И опыт – сын ошибок трудных. И …»

Всем удачи. 73!

Литература.

    А.А.Гришаев. Металлы: нестационарные химические связи и два механизма переноса электричества



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту