Советы по строительству и ремонту

Опорные узлы балки.

Сопряжения балки со стальными колоннами.

Опирание балки на стальную колонну может быть шарнирным или жестким.

При возможности лучше всего опирать балку сверху и передавать нагрузку по центру профиля колонны. При боковом креплении балки, помимо сжимающей нагрузки в колонне дополнительно возникает момент от действия этой силы из-за того, что появляется эксцентриситет и соответственно это приводит к увеличению нагрузок и перерасходу металла в колонне.

Опирание балки на колонну сверху.

где F — опорная реакция балки;

Ар — площадь смятия опорного ребра;

Rр — расчетное сопротивление стали смятию торцевой поверхности.

Чтобы вся нагрузка передавалась через ребро оно должно не много выступать, но не более 1,5 толщины ребра, обычно это 15-20 мм. Ребро необходимо снизу сострогать, чтобы нагрузка передавалась всей площадью ребра.

Т.к. узел шарнирный для фиксации балки достаточно 2-х болтов с одной стороны. Диаметр болтов принимается 16-20 мм. С затяжкой лучше не переусердствовать — это не фрикционное соединение 🙂



Толщина опорной площадки обычно принимается 20-25 мм, толщина ребер 8-12 мм.

Если имеется угол кровли, ребро нужно сострогать под необходимым углом и добавить шайбы, имеющие скос для болта.

Опирание 2-х балок на колонну сверху.


Аналогично предыдущему варианту опираем балки через ребро на оголовок колонны.

Балки соединяем между собой с помощью болтов. Сверху болты устанавливать не стоит если конечно вы не хотите создать жесткий узел. Между 2-мя ребрами устанавливаем пластинки для того, чтобы не стянуть балки вместе (это может нагрузить колонну моментом на противоположном конце балки).

Также есть вариант опереть 2-е балки на оголовок колонны следующим способом


В этом варианте балка нижней полкой ложиться на оголовок колонны.

Для передачи поперечной силы балка усиливается ребром, ребро устанавливаем так, чтобы при монтаже оно оказалось прямо над полкой колонны. Балки соединяем болтами при помощи накладной пластины (для симметричной передачи нагрузки лучше использовать 2-е пластины с 2-х сторон). Как и в предыдущем варианте нет необходимости соединять балки болтами сверху, чтобы не создать жесткий узел.

Ребра на колонне, в этом случае, не нужны.

Между 2-мя балками оставляем не большой зазор около 10-20 мм.


Шарнирное опирание балки на колонну сбоку

При боковом креплении необходимо в расчетах колонны учитывать эксцентриситет.


При шарнирном опирании нагрузка передается через опорное ребро на опорный столик. Столик обычно делают из листовой стали или неравнополочного уголка. Высоту опорного столика определяют из условия прочности сварных швов. Целесообразно приварить столик по 3-ем сторонам. Ширину столика делают на 20-40 мм больше ребра балки, чтобы опорное ребро полностью легло на опорный столик.

Диаметр отверстий делают на 3-4 мм больше диаметра болтов чтобы балка не повисла на болтах, а полностью легла на столик.

Опорное ребро балки рассчитывается на смятие по той же формуле, что и для балки опертой сверху.

При шарнирном опирании ребра в колонне не требуются. Между опорным ребром и колонной монтируется прокладка толщиной примерно 5 мм.


Жесткое сопряжение балки с колонной при помощи болтового соединения


Создать жесткое соединение можно с помощью болтового соединения или сварки. Болтовое соединение более технологично — все детали изготавливаются и окрашиваются на заводе, на строительной площадке необходимо лишь установить и затянуть болты.

В данном узле поперечная сила воспринимается также как и в шарнирном узле с помощью опорного столика. Момент передается с помощью болтов на стенки колонны. Между опорным ребром балки и колонной необходимо установить стальные прокладки для плотного прилегания балки и колонны (зазора после затяжки быть не должно).

Количество и диаметры болтов для верхнего пояса необходимо рассчитать исходя из возникающего момента в заделке балки. Болты применяются только высокопрочные. Необходимо контролировать затяжку болтов.

Стенки колонны укрепляются ребрами жесткости.


Сопряжение балок со стальными колоннами осуществляется путем их опирания сверху или примыканием сбоку к вдвойне. Такое соединение может быть или шарнирным, передающим только опорную реакцию балки, или жестким, передающим на колонну кроме опорной реакции еще и момент защемления балки в колонне. Шарнирное соединение широко применяется в большинстве балочных конструкций, жесткое - в каркасах многоэтажных зданий. Примеры опирания балок на колонны сверху показаны на рис. 15.

Рис. 15. Опирание балок на колонны

а, б - сверху

в - сбоку

Конец балки в месте опирания ее на опору укрепляют опорными ребрами, считая при этом, что вся опорная реакция передается с балки на опору через эти ребра жесткости Ребра жесткости для передачи опорной реакции надежно прикрепляют к стенке сварными швами, а торец ребер жесткости либо плотно пригоняют к нижнему поясу балки (рис. 15, а), либо строгают для непосредственной передачи опорного давления на стальную колонну (рис. 15,6). Для правильной передачи давления на колонну (при конструктивном решении по рис. 15, а) центр опорной поверхности ребра надо совмещать с осью полки колонны.

Размер опорных ребер жесткости определяют обычно из расчета на смятие торца ребра

(7.60)

Выступающая вниз часть опорного ребра (рис. 15, б) не должна превышать a < 1,5 t OP и обычно принимается 15-20 мм.

Помимо проверки на смятие торца опорного ребра производится также проверка опорного участка балки на устойчивость из плоскости балки как условного опорного стержня, включающего в площадь расчетного сечения опорные ребра и часть стенки балки шириной по 0,65 в каждую сторону (на рис. 15, б, а эта площадь заштрихована) и длиной, равной высоте стенки балки:

(7.61)

Прикрепление опорных ребер к стенке балки сварными швами должно быть рассчитано на полную опорную реакцию балки с учетом максимальной рабочей длины сварного Шва. Шарнирное примыкание балок сбоку по рис. 15, в) по своему конструктивному оформлению, работе и расчету не отличается от описания балок сверху по рис. 15, б.

11. Конструирование и расчет оголовка колонны .

При свободном сопряжении балки обычно ставят на колонну сверху, что обеспечивает простоту монтажа.

В этом случае оголовок колонны состоит из плиты и ребер, поддерживающих плиту и передающих нагрузку на стержень колонны.

Если нагрузка передается на колонну через фрезерованные торцы опорных ребер балок, расположенных близко к центру колонны, то плита оголовка поддерживается снизу ребрами, идущими под опорными ребрами балок.

Ребра оголовка приваривают к опорной плите и к ветвям колонны при сквозном стержне или к стене колонны при сплошном стержне. Швы, прикрепляющие ребро оголовка к плите, должны выдерживать полное давление на оголовок. Проверяют их по формуле:

Высоту ребра оголовка определяют требуемой длиной швов, передающих нагрузку на стержень колонны (длина швов нe должна быть больше ):

Толщину ребра оголовка определяют из условия сопротивления на смятие под полным опорным давлением:

Назначив толщину ребра, следует проверить:

(8.38)

При малых толщинах стенок швеллеров сквозной колонны и стенки сплошной колонны их надо также проверить на срез в месте npикрепления к ним ребер. Можно в пределах высоты оголовка сделать стенку более толстой.

Чтобы придать жесткость ребрам, поддерживающим опорную плиту, и укрепить от потери устойчивости стенки стержня колонны в местах передачи больших сосредоточенных нагрузок, вертикальные ребра воспринимающие нагрузку, обрамляют снизу горизонтальными ребрами.

Опорная плита оголовка передает давление от вышележащей конструкции на ребра оголовка и служит для скрепления балок с колоннами монтажными болтами, фиксирующими проектное положение балок.

Толщина опорной плиты принимается конструктивно в пределах 20-25 мм.

При фрезерованном торце колонны давление от балок передается через опорную плиту непосредственно на ребра оголовка. В этом случае толщина швов, соединяющих плиту с ребрами, так же как и с ветвями колонны, назначается конструктивно.

Большие опорные давления балок лучше передавать на колонну через ребра, расположенные над полками колонн.

Если балка, крепится к колонне сбоку, вертикальная реакция передается через опорное ребро балки на столик, приваренный к полкам колонны. Торец опорного ребра балки и верхняя кромка столика пристраиваются. Толщину столика принимают на 20-40 мм больше толщины опорного ребра балки.

Столик целесообразно приваривать к колонне по трем сторонам.

Сварные швы, приваривающие столик к колонне, рассчитывают по формуле:

Коэффициент 1,3 учитывает возможную непараллельность торцов опорного ребра балки и столика из-за неточности изготовления, что приводит к неравномерному распределению реакции между вертикальными швами.

Чтобы балка не зависла на болтах и плотно стала на опорный столик, опорные ребра балки прикрепляют к стержню колонны болтами, диаметр которых должен быть на 3-4 мм меньше диаметра отверстий.

Узел опирания главной балки на оголовок колонны .



Представлены шесть схем классических конструктивных решений в вопросе опирания несущих металлических балок перекрытий на кирпичные стены строений.

● Проект зданий включает в себя процесс конструирования балочных перекрытий, связанный со множеством математических вычислений - расчёт монтажных соединений, компоновка опорных узлов балок, подбор сечений отдельных элементов, которые призваны обеспечивать работоспособность узлов.

● Выбор одного из представленных вариантов должен исходить из величины опорного давления под концом балки - т. е. опорная реакция является основополагающим фактором при выборе решения. Стальные балки перекрытия должны не просто быть уложены на несущие кирпичные стены, а должны опираться через железобетонные или стальные распределительные подушки. В число основных задач этих подушек входят:
- выравнивание давления под концами балок;
- предотвращение местного разрушения кирпичной кладки под опорными участками балок.

● Первые четыре узла (из шести) предполагают шарнирный способ опирания балок непосредственно на кирпичную стену через слой раствора толщиной в 15 мм. Опорное давление передаётся на кирпичную кладку через опорные металлические плиты толщиной 20 мм. Размеры опорных плит выбираются с таким расчётом, чтоб среднее давление под ними - т. е. на площади сжатия - не было больше величины расчётного сопротивления кирпичной кладки на жёстком цементном растворе. Несущая кирпичная стена должна быть выполнена из полнотелого кирпича с хорошими характеристиками по прочности.

Если величина опорного давления превышает 10 тонн, то необходимая толщина железобетонной распределительной подушки уже должна составлять не менее 100 мм., причём сама подушка должна быть снабжена двумя армирующими сетками. В этом случае опорные узлы металлических балок должны быть обязательно жёсткими и категорически не допускается опирание балки перекрытий сразу на кирпичную стену. Руководством в этом вопросе являются требования СНиП II-22-81* Каменные и армокаменные конструкции.


Узел опирания №1 шарнирный . Толщина кирпичной стены b=380 мм. Предельное значение опорной реакции R=0,6 т.

Узел опирания №2 шарнирный . Толщина кирпичной стены b>380 мм. Предельное значение опорной реакции R=0,7-3,0 т.


Узел опирания №3 шарнирный . Толщина кирпичной стены b>380 мм. Предельное значение опорной реакции R=3,1-5,0 т.


Узел опирания №4 шарнирный . Толщина кирпичной стены b>380 мм. Предельное значение опорной реакции R=5,1-7,0 т.


Узел опирания №5 жёсткий . Толщина кирпичной стены b>380 мм. Предельное значение опорной реакции R=10,1-18,0 т.


Узел опирания №6 жёсткий . Толщина кирпичной стены b>380 мм. Предельное значение опорной реакции R=18,1-20,0 т.


Во всех узлах все фрикционные соединения элементов выполняются на анкерных болтах класса точности В, с классами прочности 5.8 и 8.8.

Во всех узлах катеты всех угловых швов следует принимать по наименьшей толщине свариваемых элементов. Минимальны значения указаны в таблице 38 СНиП II-23-81* Стальные конструкции.

● Если в процессе эксплуатации строения будут иметь место какие-либо динамические нагрузки, то все элементы и детали узлов опирания в обязательном порядке должны быть проверены расчётом на выносливость.

Для устройства каркасов одноэтажных и многоэтажных промышленных зданий применяют железобетонные и стальные колонны.

Железобетонные колонны одноэтажных промышленных зданий (рис. 20.7) могут быть с консолями и без них (если отсутствуют мостовые краны). По расположению в плане их подразделяют

па колонны средних и крайних рядов. В зависимости от поперечного сечения колонны бывают прямоугольные, таврового профиля и двухветвевые. Размеры поперечного сечения зависят от величины действующих нагрузок. Применяют следующие унифицированные размеры сечений колонн: 400×400, 400×600, 400×800. 500×500; 500×600 и 500×800 мм - для прямоугольных; 400×600 и 400×800 мм - для тавровых и 400×1000, 500×1000, 500×1300, 500×1400, 500×1500, 600×1400, 600×1900 и 600×2400 мм - для двухветвевых. Колонны могут состоять из нескольких частей, которые собирают на строительной площадке.

Колонны с консолями состоят из надкрановой и подкрановой ветвей. Сечение над крановых ветвей чаще всего квадратное или прямоугольное: 400× ×400 или 500×500 мм. Для изготовления колонн применяют бетой марок 200 – 500арматуру различных классов.

Длину колонн принимают с учетом высоты цеха и глубины их заделки в фундамент, которая может быть: для колонн прямоугольного сечения без мостовых крапов - 750 мм, для колонн прямоугольного и двутаврового сечения с мостовыми крапами - 850 мм; для двухветвевых колонн - 900- 1200 мм.

Кроме основных колонн для устройства фахверков используют фахверковые колонны. Их устанавливают вдоль здания при шаге крайних колони 12 м и размере панелей, стен 6 м, а также в торцах зданий.

Для устройства каркасов многоэтажных зданий используют железобетонные колонны высотой на один, два и три этажа. Сечение колони 400×400 и 400×600 мм (рис. 20.8). Изготовляют колонны из бетона марок 200-500 и армируют стальными каркасами. Сопряжение ригелей с колоннами может быть консольным и бесконсольным. Стыки колонн устраивают на 600 – 1000 мм выше перекрытия.

Стальные колонны одноэтажных зданий могут иметь постоянное по высоте сечение и переменное. В свою очередь, колонны с переменным сечением могут иметь подкрановую часть сплошного и сквозного сечения (рис. 20.9).

Сквозные колонны подразделяют на колонны с ветвями, соединенными связями, и колонны раздельные, которые состоят из независимо работающих шатровой и подкрановой ветвей (рис. 20.9, д). Колонны постоянного сечения используют в случае применения кранов грузоподъемностью до 20 т и при высоте здания до 9,6 м.

В случаях, когда колонны в основном работают на центральное сжатие, при­меняют колонны сплошного сечения. Для изготовления сплошных колонн применяют широкополочный прокатный или сплошной двутавр, а для сквозных колонн могут быть использованы также двутавры, швеллеры и уголки.

Раздельные колонны устраивают в зданиях с тяжелыми мостовыми кранами (125 т и выше). В нижней части колонн для сопряжения с фундаментами предусматривают стальные базы (башмаки). Базы к фупдаментам крепят анкерными болтами, закладываемыми в фундамент при их изготовлении. Нижняя опорная часть колонны вместе с базой покрывается слоем бетона.

Жесткость неустойчивость зданий достигаются установкой системы верти­кальных и горизонтальных связей. Так, для снижения и перераспределения возникающих усилий в элементах каркаса от температурных и других воз­действий здание разбивают на температурные блоки и в середине каждого блока устраивают вертикальные связи между колоннами: при шаге колонн 6 м - крестовые; при шаге колонн 12 м - портальные (рис. 20.10). Связи выполняют из уголков или швеллеров и приваривают к закладным частям колонн.

Для обеспечения работы мостовых кранов на консоли колонн монтируют подкрановые балки, на которые укладывают рельсы. Подкрановые балки также обеспечивают дополнительную пространственную жесткость здания. Подкрановые балки могут быть железобетонные и стальные.

Железобетонные подкрановые балки применяют при шаге колони 6 и 12 м, по сравнительно редко, так как они имеют значительную массу, расход бетона и арматуры. Балки могут иметь тавровое (для длины 6 м) и двутавровое сечение с утолщением стенок только на опорах.


К колоннам железобетонные подкрановые балки крепят сваркой закладных деталей и анкерными болтами (рис. 20.11). После тщательной установки и выверки гайки на анкерных болтах заваривают. Рельсы к балкам присоединяют прижимными лапками, которые располагают через 750 мм. В концах подкрановых путей устанавливают стальные упоры - ограничители, которые снабжаются амортизаторами-буферами из деревянного бруса.

Более эффективными по сравнению с железобетонными являются стальные подкрановые балки, которые подразделяются на разрезные и неразрезные. Они более просты в изготовлении и при монтаже. По типу сечения подкрановые балки могут быть сквозными (решетчатыми) и сплошными.

Балки сплошного сечения (рис. 20.12) изготовляют в виде двутавра (прокат­ного профиля или составленного из трех листов стали с ребрами жесткости). Элементы сечения балок соединяют сваркой. Иногда изготовляют клепаные балки.

Сквозные подкрановые балки в виде шпренгельных систем применяют в зда­ниях с шагом колонн 12 м и более при кранах среднего и легкого режимов работы грузоподъемностью до 75 т.

Высоту балок определяют по расчету, и она может быть от 650 до 2050 мм с градацией размеров через 200 мм.

Крепление рельсов к балкам может быть неподвижным и подвижным. Неподвижное крепление осуществляется путем приварки рельса к верхней полке балки при кранах грузоподъемностью до 30 т. Подвижное крепление, осуществляемое чаще всего, производят с помощью скоб и прижимных лапок (рис. 20.12, в, г).


Если в качестве материалов для стен применяют кирпич или мелкие блоки, то для их опирания, а также в местах перепада высот смежных пролетов ис­пользуют обвязочные железобетонные балки (рис. 20.13, а). Их обычно уст­раивают над оконными проемами или лептами остекления.


Обвязочные балки длиной 5950 мм имеют высоту сечения 585 мм и ширину 200, 250 и 380 мм. Их устанавливают на опорные стальные столики и крепят к колоннам с помощью стальных планок, привариваемых к закладным элементам (рис. 20.13, б).

§ 20.4. Несущие конструкции покрытия

Несущие конструкции покрытия, являющиеся важнейшим конструктивным элементом здания, принимают в зависимости от величины пролета, характера и значений действующих нагрузок, вида грузоподъемного оборудования, характера производства и других факторов.

По характеру работы несущие конструкции покрытия бывают плоскостные и пространственные. По материалу конструкции покрытия делят на железобе­тонные, металлические, деревянные и комбинированные.

В связи с характером работы эти конструкции должны отвечать требованиям прочности, устойчивости, долговечности, архитектурно-художественным и экономическим. Поэтому при выборе несущих конструкций покрытия производят тщательный технико-экономический анализ нескольких вариантов. Так, железобетонные конструкции огнестойки, долговечны и часто более экономичны по сравнению со стальными. Стальные же имеют относительно небольшую массу, просты в изготовлении и монтаже, имеют высокую степень сборности. Деревянные конструкции обладают легкостью, относительно небольшой стои­мостью и при соответствующей защите - приемлемой огнестойкостью и дол­говечностью. Весьма эффективны и комбинированные конструкции, состоящие из нескольких видов материалов. При этом важно, чтобы каждый материал работал в тех условиях, которые являются самыми благоприятными для него. Ниже рассмотрены основные виды несущих конструкций покрытий.

Железобетонные балки (рис. 20.14) применяют при пролетах до 18 м. Они могут быть односкатными и двускатными. Для их изготовления используют бетон кл. В15÷В40и обычное или предварительно напряженное армирование. На верхнем поясе балок предусматривают закладные детали для крепления панелей покрытия или прогонов. Балки крепят к колоннам сваркой закладных деталей (рис. 20.14, д).

Более эффективными по сравнению с балками являются железобетонные фермы, которые используют в зданиях пролетом 18, 24, 30 и 36 м (рис. 20.15).

Они могут быть сегментные, арочные, с параллельными поясами, треугольные и др. Между нижним и верхним поясами ферм располагают систему стоек и раскосов. Решетка ферм предусматривается таким образом, чтобы плиты перекрытий шириной 1,5 и 3 м опирались на фермы в узлах стоек и раскосов.

Широкое применение получили сегментные безраскосные железобетонные фермы пролетом 18 и 24 м. Для уменьшения уклона покрытия для многопролетных зданий предусматривают устройство на верхнем поясе таких ферм специальных стоек (столбиков), на которые опирают панели покрытия

Изготовляют фермы из бетона кл. В22,5-В30.


Крепят фермы к колоннам болтами и сваркой закладных элементов.

При шаге стропильных ферм и балок 6 м и шаге колонн средних рядов 12 м используют подстропильные железобетонные фермы и балки. На рис. 20.15,5 показан фрагмент опирания подстропильной фермы на колонну и стропильной на подстропильную.

Более эффективными несущими конструкциями покрытий являются стальные стропильные и подстропильные фермы (рис. 20.16). Стропильные фермы применяют для пролетов 18, 24, 30, 36 м и более при шаге 6, 12, 18 м и более.

Пояса и решетку ферм конструируют из уголков или труб соединяют между собой сваркой с помощью фасонок из листовой стали. Сечения полок поясов, стоек и раскосов принимают по расчету.

Высоту на опоре ферм с параллельными поясами принимают 2550- 3750 мм, полигональных - 2200 мм, треугольных - 450 мм.

Сопряжение ферм с колоннами в большинстве случаев делают шарнирное с помощью надопорной стойки двутаврового сечения. Стойки крепят к стальным и железобетонным колоннам анкерными болтами, а пояса ферм к стойкам - черными болтами (рис. 20.16, б).

Для многоэтажных промышленных зданий применяют балочные и безба­лочные перекрытия. Балки перекрытий (ригели) изготовляют из бетона марок



200-400 координационными пролетами б и 9 м унифицированной высотой сечения 0,8 м. Балки могут иметь прямоугольное и тавровое сечения (рис. 20.17). Ригели прямоугольного сечения применяют при больших нагрузках. Сопряжение с колонной осуществляется путем опирания ригеля на консоль колонны. При нагрузках на перекрытия более 25 кПа применяют ригели высотой 1,0 и 1,2 м и плиты перекрытия шириной 0,75 м, высотой 0,45 м либо коробчатый настил.


Если многоэтажное здание проектируется с сеткой колонн 12×12 м, то применяют каркас рамного типа (сборный или монолитный) со сборными пе­рекрытиями из коробчатого настила высотой 0,6 м.

Для многоэтажных зданий со сборным безбалочным каркасом с сеткой ко­лонн 6×6 м применяют плоские плиты перекрытий сплошного сечения (надко-лонные и пролетные) толщиной 150 или 180 мм. Надколонные плиты устанав­ливаются выступами в гнезда капители, предусмотренные по ее периметру, с образованием после замоноличивания железобетонных шпонок.

В зданиях с нормальным температурно-влажностным режимом, а также с агрессивной по отношению к другим конструкциям средой используют деревянные фермы и балки. Деревянные балки пролетом до 18 м, клеенные из досок, изготовляют прямоугольного или двутаврового сечений высотой на опоре 450-1300 мм с уклоном 1:10 и 1:20. Балки с фанерной стенкой могут иметь двутавровое или коробчатое сечение.

Деревянные фермы могут быть сегментные, многоугольные, трапециевидные и треугольные.

Весьма эффективными являются армодеревянные конструкции покрытия (рис. 20.18) прямоугольного, таврового, двутаврового или коробчатого сечения. Если коэффициент армирования сечения 0,01-0,04, то несущая способность и жесткость деревянных балок повышается более чем в два раза.


Армируют деревянные элементы стальными стержнями и соединяют с древесиной эпоксидным клеем.

Для обеспечения устройства помещений, имеющих значительные размеры, используют конструкции покрытий большепролетные и пространственные. Покрытия в большепролетных зданиях бывают плоскостные, пространственные и висячие.

Большепролетными плоскостными покрытиями являются железобетонные и стальные фермы (рис. 20.19). Железобетонные фермы пролетом до 96 м изготовляют из бетона кл. В30 предварительно напряженным нижним поясом. Используют также сборные и монолитные рамы и арки, имеющие различные пролеты.



Пространственные покрытия выполняют из плоскостных элементов, моно­литно связанных между собой и работающих как цельная конструкция, или в виде оболочек (рис. 20.20). Оболочки, которые могут перекрыть большие пролеты, имеют незначительную толщину 30-100 мм, так как бетон в этом случае работает в основном на сжатие.


Оболочки могут быть цилиндрические, купольные, параболоидные и др. Хорошие показатели имеет покрытие из длинных цилиндрических оболочек, применяемых при сетке колонн 12×24 м и более.

Устраивают также висячие покрытия, которые работают на растяжение (рис. 20.21). Висячие конструкции делятся на вантовые и собственно висячие.

Несущими элементами в вантовых покрытиях являются тросы и вантовые прямолинейные элементы. В качестве настилов используют аллюминиево-пластмассовые панели, коробчатые настилы из стеклопластиков и сотовые па­нели. Вантовые покрытия могут быть пролетом 100 м и более.

В собственно висячих покрытиях несущими конструкциями являются мем­браны и гибкие нити, криволинейно очерченные под действием приложенной к ним нагрузки.

В промышленном строительстве широко используют и пневматические кон­струкции.

2.440-1.1 00 КМ Пояснительная записка
2.440-1.1 01 КМ Шарнирные узлы. Рекомендации по применению шарнирных узлов
2.440-1.1 02 КМ Шарнирные узлы. Этажное опирание балок. Узлы 1 и 2
2.440-1.1 03 КМ Шарнирные узлы. Крепление балок на опорных уголках. Узел 3
2.440-1.1 04 КМ Шарнирные узлы. Крепление балок на опорных уголках. Узел 4
2.440-1.1 05 КМ Шарнирные узлы. Геометрические характеристики и несущие способности узла 4
2.440-1.1 06 КМ Шарнирные узлы. Опирание балок на ребра из швеллеров. Узел 5
2.440-1.1 07 КМ Шарнирные узлы. Опирание балок на ребро из тавров. Узел 6
2.440-1.1 08 КМ Шарнирные узлы. Крепление балок на опорных планках. Узлы 7, 7а, 8, 8а
2.440-1.1 09 КМ Шарнирные узлы. Таблица геометрических характеристик и несущих способностей узлов 7, 7а
2.440-1.1 10 КМ Шарнирные узлы. Таблица геометрических характеристик и несущих способностей узлов 8, 8а
2.440-1.1 11 КМ Шарнирные узлы. Крепление балок на опорных планках из уголков. Узел 9
2.440-1.1 12 КМ Шарнирные узлы. Опирание балок на оголовок стойки, центральное опирание. Узлы 10, 11
2.440-1.1 13 КМ Шарнирные узлы. Таблица геометрических характеристик и несущих способностей узлов 10, 11
2.440-1.1 14 КМ Шарнирные узлы. Крепление балок на 2-х болтах нормальной точности (горизонтальное). Узлы 12, 13
2.440-1.1 15 КМ Шарнирные узлы. Крепление балок к колоннам на 2-х болтах нормальной точности. Узел 14
2.440-1.1 16 КМ Шарнирные узлы. Крепление балок к колоннам на 3-х болтах нормальной точности. Узел 15
2.440-1.1 17 КМ Шарнирные узлы. Крепление балок к колоннам на 4-х болтах нормальной точности. Узел 16
2.440-1.1 18 КМ Шарнирные узлы. Крепление балок к колоннам на 5-и болтах нормальной точности. Узел 17
2.440-1.1 19 КМ Шарнирные узлы. Крепление балок к колоннам на 6-и болтах нормальной точности. Узел 18
2.440-1.1 20 КМ Шарнирные узлы. Крепление балок к колоннам на 7-и болтах нормальной точности. Узел 19
2.440-1.1 21 КМ Шарнирные узлы. Крепление балок к балкам на 2-х болтах нормальной точности. Узел 20
2.440-1.1 22 КМ Шарнирные узлы. Крепление балок к балкам на 3-х болтах нормальной точности. Узел 21
2.440-1.1 23 КМ Шарнирные узлы. Крепление балок к балкам на 4-х болтах нормальной точности. Узел 22
2.440-1.1 24 КМ Шарнирные узлы. Крепление балок к балкам на 5-и болтах нормальной точности. Узел 23
2.440-1.1 25 КМ Шарнирные узлы. Крепление балок к балкам на 6-и болтах нормальной точности. Узел 24
2.440-1.1 26 КМ Шарнирные узлы. Крепление балок к балкам на 7-и болтах нормальной точности. Узел 25
2.440-1.1 27 КМ Шарнирные узлы. Крепление балок к балкам на 2-х болтах нормальной точности. Узел 26
2.440-1.1 28 КМ Шарнирные узлы. Крепление балок к балкам на 3-х болтах нормальной точности. Узел 27
2.440-1.1 29 КМ Шарнирные узлы. Крепление балок к балкам на 4-х болтах нормальной точности. Узел 28
2.440-1.1 30 КМ Шарнирные узлы. Крепление балок к колоннам на 2-х болтах нормальной точности. Узел 29
2.440-1.1 31 КМ Шарнирные узлы. Крепление балок к колоннам на 3-х болтах нормальной точности. Узел 30
2.440-1.1 32 КМ Шарнирные узлы. Крепление балок к колоннам на 4-х болтах нормальной точности. Узел 31
2.440-1.1 33 КМ Шарнирные узлы. Крепление балок к колоннам на 5-и болтах нормальной точности. Узел 32
2.440-1.1 34 КМ Шарнирные узлы. Крепление балок к колоннам на 6-и болтах нормальной точности. Узел 33
2.440-1.1 35 КМ Шарнирные узлы. Крепление балок к колоннам на 7-и болтах нормальной точности. Узел 34
2.440-1.1 36 КМ Шарнирные узлы. Опирание балок на кирпичные стены. Узлы 35-38
2.440-1.1 37 КМ Рамные узлы. Общий вид и таблица характеристик узла 39
2.440-1.1 38 КМ Рамные узлы. Общий вид и таблица характеристик узла 40
2.440-1.1 39 КМ Рамные узлы. Узлы 39, 40
2.440-1.1 40 КМ Рамные узлы. Общий вид и таблица характеристик узла 41
2.440-1.1 41 КМ Рамные узлы. Общий вид и таблица характеристик узла 42
2.440-1.1 42 КМ Рамные узлы. Узлы 41, 42
2.440-1.1 43 КМ Рамные узлы. Детали узлов 39-42
2.440-1.1 44 КМ Рамные узлы. Таблица характеристик деталей узлов 39-42
2.440-1.1 45 КМ Рамные узлы. Опорные столики для ригелей в узлах 39-42, 44, 45
2.440-1.1 46 КМ Рамные узлы. Общий вид узла 43. Таблица характеристик узлов 43, 44
2.440-1.1 47 КМ Рамные узлы. Общий вид и таблица характеристик узла 44
2.440-1.1 48 КМ Рамные узлы. Узлы 43, 44. Вертикальные накладки по стенкам ригелей в узле 43. Таблица характеристик накладок
2.440-1.1 49 КМ Рамные узлы. Горизонтальны накладки по поясам ригелей в узлах 43, 44. Таблица характеристик накладок
2.440-1.1 50 КМ Рамные узлы. Общий вид и таблица характеристик узла 45
2.440-1.1 51 КМ Рамные узлы. Узел 45. Горизонтальны накладки по поясам ригелей. Таблица характеристик накладок
2.440-1.1 52 КМ Рамные узлы. Таблица для подбора горизонтальных ребер жесткости в колоннах
2.440-1.1 53 КМ Рамные узлы. Горизонтальные ребра жесткости в колоннах. Таблица характеристик ребер
2.440-1.1 54 КМ Рамные узлы. Накладные ребра жесткости
2.440-1.1 55 КМ Рамные узлы. Таблица несущей способности колонн по прочности
2.440-1.1 56 КМ Рамные узлы. Таблица несущей способности ригелей по прочности

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Советы по строительству и ремонту